John Jasper
Air Force Institute of Technology
AMS Spring Sectional Meeting
The views expressed in this talk are those of the speaker and do not reflect the official policy
or position of the United States Air Force, Department of Defense, or the U.S. Government.
https://slides.com/johnjasper/amscincy/
Definition. Let \[\Phi = \big[\varphi_{1}\ \ \varphi_{2}\ \ \cdots\ \ \varphi_{N}\big]\in \mathbb{F}^{d\times N},\]
be a rank \(d\) matrix where each column \(\varphi_{n}\) is unit norm
\[\|\varphi_{n} \|^{2}=1.\]
1) (Tightness) \(\exists\,A>0\) such that \((\Phi^{\ast}\Phi)^{2} = A\Phi^{\ast}\Phi\).
2) (Equiangular) \(\exists\,B>0\) such that \(|\frac{1}{B}\varphi_{m}^{\ast}\varphi_{n}^{}|=1\) for \(m\neq n\).
If both 1) and 2) hold, then \(\{\varphi_{n}\}_{n=1}^{N}\) is an ETF(\(d,N)\).
\[\Phi^{\ast}\Phi = \left[\begin{array}{cccc} 1 & \varphi_{1}^{\ast}\varphi_{2} & \cdots & \varphi_{1}^{\ast}\varphi_{N}\\[1ex] \varphi_{2}^{\ast}\varphi_{1} & 1 & \cdots & \varphi_{2}^{\ast}\varphi_{N}\\[1ex] \vdots & \vdots & \ddots & \vdots\\[1ex] \varphi_{N}^{\ast}\varphi_{1} & \varphi_{N}^{\ast}\varphi_{2} & \cdots & 1\end{array}\right]\]
\(1\)'s down the diagonal
1) \(\Phi^{\ast}\Phi \propto\) projection
2) \(|\varphi_{m}^{\ast}\varphi_{n}^{}|\) constant
Example 2. Consider the (multiple of a) unitary matrix
Example 1. Consider the (multiple of a) unitary matrix
\[\left[\begin{array}{rrrr}1 & -1 & 1 & -1\\ 1 & 1 & -1 & -1\\ 1 & -1 & -1 & 1\end{array}\right]\]
\[\left[\begin{array}{rrrr} 1 & 1 & 1 & 1\\ 1 & -1 & 1 & -1\\ 1 & 1 & -1 & -1\\ 1 & -1 & -1 & 1\end{array}\right]\]
\[\left[\begin{array}{rrrr} 1 & 1 & 1\\ \sqrt{2} & -\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}}\\ 0 & \sqrt{\frac{3}{2}} & -\sqrt{\frac{3}{2}}\end{array}\right]\]
\[\left[\begin{array}{rrrr}\sqrt{2} & -\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}}\\ 0 & \sqrt{\frac{3}{2}} & -\sqrt{\frac{3}{2}}\end{array}\right]\]
Example 3.
Definition. A \((2,k,v)\)-Steiner system \(\{0,1\}\)-matrix \(X\) with the following properties:
Example. The matrix
\(X = \)
is a \((2,2,4)\)-Steiner system.
\(=\)
Take a Steiner system with \(r\) ones per column
and an \(r\times (r+1)\) ETF with unimodular entries
The Star product is a "Steiner" ETF
Gram matrix of ETF:
Adjacency matrix of graph:
Replace diagonal 1's with 0's
Replace -1's with 1's
Zero out the diagonal
Mult. by \(-1\)
Definition. A simple graph on \(n\) vertices is called strongly regular if there exist nonnegative integers \(k,\lambda,\mu\) such that
Such a graph is called an SRG\((n,k,\lambda,\mu)\).
Equivalently, if \(G\) is the adjacency matrix, then
\[G^{2} = k I + \lambda G + \mu(J-I-G)\quad\text{(where \(J\) is the all-ones matrix.)}\]
If \(\Phi\) is an ETF, then \(\Phi^{\ast}\Phi\) also satisfies a "quadratic relation":
\[(\Phi^{\ast}\Phi)^{2} = A\Phi^{\ast}\Phi.\]
But it need not have the same number of \(-1\)'s in each row!
\(\Phi=\)
\(\Phi^{\top}\Phi=\)
However, if
then the associated graph is already regular, and thus strongly regular. No normalization step required!
\(\mathbf{1}^{\top}\) is an eigenvector of \(\Phi^{\top}\Phi\).
\(\Leftrightarrow\)
\(\mathbf{1}\) in row space
SRG\((16,5,0,2)\)
\(\mathbf{1}^{\top}\in\ker\Phi\)
SRG\((16,9,4,6)\)
Example.
Theorem [Fickus, J, Mixon,Peterson,Watson '18] . If \(\Phi\) is a \(d\times N\) real ETF, and there exists a \(\pm1\) vector which is an eigenvector of \(\Phi^{\top}\Phi\), then there exists a strongly regular graph on \(N\) vertices.
Goal: For known ETFs, find a \(\pm 1\) vector in the kernel or the row space.
\[\left[\begin{array}{l} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right.\]
\[\left.\begin{array}{l} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right]\]
\(\bigotimes\)
\(\sqrt{2}\)
\(\sqrt{\dfrac{1}{2}}\)
\(\sqrt{\dfrac{3}{2}}\)
Hadamard matrix
Hadamard matrix
Steiner Triple System
\(\ =+1\)
\(\ =-1\)
\(\ =\sqrt{2}\)
\(\ =-\sqrt{\dfrac{1}{2}}\)
\(\ =+\sqrt{\dfrac{1}{2}}\)
\(\ =\sqrt{\dfrac{3}{2}}\)
Theorem (Fickus, J,Mixon, Peterson '18). If there exists an
\(h\times h\) Hadamard matrix with \(h\equiv 1\) or \(2\) \(\text{mod}\ 3\),
then there exists a \((2,3,2h-1)\)-Steiner system
and by the Tremain construction there exists a real \(d\times N\) ETF where \[d=\frac{1}{3}(h+1)(2h+1),\qquad N=h(2h+1).\]
\(\ =+1\)
\(\ =-1\)
\(\ =\sqrt{2}\)
\(\ =-\sqrt{\dfrac{1}{2}}\)
\(\ =+\sqrt{\dfrac{1}{2}}\)
\(\ =\sqrt{\dfrac{3}{2}}\)
\(\ =-\sqrt{2}\)
\(\ =-\sqrt{\dfrac{3}{2}}\)
Theorem (Fickus, J,Mixon, Peterson '18). If there exists an
\(h\times h\) Hadamard matrix with \(h\equiv 2\) \(\text{mod}\ 3\),
then there exists a strongly regular graph with parameters:
\[v=h(2h+1),\ k=\frac{(h+2)(2h-1)}{2},\ \lambda=\frac{(h-1)(h+4)}{2},\ \mu = \frac{h(h+2)}{2}\]
This gave us a new ETF!
From Brouwer's table online:
\(\ =+1\)
\(\ =-1\)
\(\ =\sqrt{2}\)
\(\ =-\sqrt{\dfrac{1}{2}}\)
\(\ =+\sqrt{\dfrac{1}{2}}\)
\(\ =\sqrt{\dfrac{3}{2}}\)
These are the graphs associated with a real \(15\times 36\) ETF.
\(\ =+1\)
\(\ =-1\)
\(\ =\sqrt{2}\)
\(\ =-\sqrt{\dfrac{1}{2}}\)
\(\ =+\sqrt{\dfrac{1}{2}}\)
\(\ =\sqrt{\dfrac{3}{2}}\)
\(\ =-\sqrt{2}\)
\(\ =-\sqrt{\dfrac{3}{2}}\)
Theorem (J). If there exists an
\(h\times h\) Hadamard matrix with \(h\equiv 1\) or \(2\) \(\text{mod}\ 3\),
then there exists a strongly regular graph with parameters:
\[v=h(2h+1),\quad k=h^2-1,\quad \lambda=\frac{1}{2}(h^2-4),\quad \mu = \frac{1}{2}h(h-1)\]
There exists a \(20\times 20\) Hadamard matrix, and hence an SRG(820,399,198,190), which is new!
From Brouwer's table online:
\(\bigotimes\)
\[\left[\begin{array}{l} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right.\]
\[\left.\begin{array}{l} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right]\]
\(I_{3}\otimes\)(\(2\times 3\) ETF)
Hadamard Matrix
Group Divisible Design (GDD)
\(\ =+1\)
\(\ =-1\)
\(\ =\sqrt{2}\)
\(\ =-\sqrt{\dfrac{1}{2}}\)
\(\ =+\sqrt{\dfrac{1}{2}}\)
\(\ =\sqrt{\dfrac{3}{2}}\)
\(\ =-\sqrt{2}\)
\(\ =-\sqrt{\dfrac{3}{2}}\)
\(\ =+1\)
\(\ =-1\)
\(\ =\sqrt{2}\)
\(\ =-\sqrt{\dfrac{1}{2}}\)
\(\ =+\sqrt{\dfrac{1}{2}}\)
\(\ =\sqrt{\dfrac{3}{2}}\)
\(\ =-\sqrt{2}\)
\(\ =-\sqrt{\dfrac{3}{2}}\)
Theorem (J). If there exists an
\(h\times h\) Hadamard matrix with \(h\equiv 1\) \(\text{mod}\ 3\),
then there exists a strongly regular graph with parameters:
\[v=h(2h+1),\ k=\frac{(h+2)(2h-1)}{2},\ \lambda=\frac{(h-1)(h+4)}{2},\ \mu = \frac{h(h+2)}{2}\]
There exists a \(16\times 16\) Hadamard matrix, and hence an SRG(528,279,150,144), which is new!
From Brouwer's table online:
2
5
15
51
77
145
187
287
345
477
551
715
3
10
36
136
210
406
528
820
990
1378
1596
2080
\(d\)
\(N\)
Exists
Centered
Axial
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
?
?
?
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
?
?
?
?
?
?
Theorem (J). There exists an SRG(210,95,40,45)
From Brouwer's table online:
*ETF table by Dustin Mixon and Matt Fickus
, Spence difference set
\[\begin{array}{c|cccccc} & (0,0,0,1) & (1,1,0,1) & (0,0,1,0) & (1,0,1,0) & (0,0,1,1) & (0,1,1,1)\\ \hline (0,0,0,1) & (0,0,0,0) & (1,1,0,0) & (0,0,1,1) & (1,0,1,1) & (0,0,1,0) & (0,1,1,0)\\ (1,1,0,1) & (1,1,0,0) & (0,0,0,0) & (1,1,1,1) & (0,1,1,1) & (1,1,1,0) & (1,0,1,0)\\ (0,0,1,0) & (0,0,1,1) & (1,1,1,1) & (0,0,0,0) & (1,0,0,0) & (0,0,0,1) & (0,1,0,1)\\ (1,0,1,0) & (1,0,1,1) & (0,1,1,1) & (1,0,0,0) & (0,0,0,0) & (1,0,0,1) &(1,1,0,1)\\ (0,0,1,1) & (0,0,1,0) & (1,1,1,0) & (0,0,0,1) & (1,0,0,1) & (0,0,0,0) & (0,1,0,0)\\ (0,1,1,1) & (0,1,1,0) & (1,0,1,0) & (0,1,0,1) & (1,1,0,1) & (0,1,0,0) & (0,0,0,0) \end{array}\]
\[D=\{(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,1,1),(1,0,1,0),(1,1,0,1)\}\]
is a (McFarland) difference set in \(G=\Z_{2}\times\Z_{2}\times\Z_{2}\times\Z_{2}\)
Each nonzero element appears exactly twice in the difference table:
This \(6\times 16\) ETF from a McFarland difference set is also a Steiner ETF
*ETF table by Dustin Mixon and Matt Fickus
, Spence difference set
GDD ETF:
Tremain ETF:
Theorem (Fickus, JJ '19). Given a
\(d\times n\) ETF
\(k\)-GDD of type \(M^{U}\)
and
provided certain integrality conditions hold, there exists a \(D\times N\) ETF with \(D>d\), \(N>n\) and \(\frac{D}{N}\approx \frac{d}{n}.\)
This GDD
Combined with a \(6\times 16\) ETF, like this one:
produces a complex \(266\times 1008\) ETF, which appears to be new!
\(v=6m+3\)
\(k=3\)
\(r = \frac{v-1}{k-1} = \frac{6m+2}{2} = 3m+1\)
\(b = \frac{vr}{k} = \frac{(6m+3)(3m+1)}{3} = (2m+1)(3m+1)\)
\(\frac{b}{r} = (2m+1)\)
\(H=3m+1\)
\(d = 2\frac{b}{r} + b-\frac{b}{r} = (2m+1)(3m+1) + (2m+1) = (2m+1)(3m+2)\)
\(N = vH = (6m+3)(3m+1) = 3(2m+1)(3m+1)\)
\(N-1 = 3(2m+1)(3m+1) - 1 = 18m^2+15m+2 = (3m+2)(6m+1)\)
\(\alpha=\frac{N}{d} = \frac{ 3(2m+1)(3m+1)}{(2m+1)(3m+2)} = \frac{ 3(3m+1)}{(3m+2)}\)
\(\beta^2 = \frac{N-d}{d(N-1)} = \frac{3(2m+1)(3m+1) - (2m+1)(3m+2)}{ (2m+1)(3m+2)\big(3(2m+1)(3m+1)-1\big)} = \frac{3(3m+1) - (3m+2)}{ (3m+2)\big(3(2m+1)(3m+1)-1\big)}\)
\( = \frac{6m+1}{(3m+2)\big(18m^2+15m+2\big)} = \frac{6m+1}{(3m+2)(3m+2)(6m+1)} = \frac{1}{(3m+2)^2}\)
\(K = \frac{N-1}{2}+\frac{\alpha-1}{2\beta} = \frac{1}{2}\left((3m+2)(6m+1)+\left(\frac{ 3(3m+1)}{3m+2}-1\right)(3m+2)\right)\)
\( = \frac{1}{2}\left((3m+2)(6m+1)+\left(6m+1)\right)\right) = \frac{1}{2}(3m+3)(6m+1)\)
Theorem (the Welch bound). Given a collection of unit vectors
\(\Phi=(\varphi_{i})_{i=1}^{N}\) in \(\mathbb{C}^d\), the coherence satisfies
\[\mu(\Phi):=\max_{i\neq j}|\langle \varphi_{i},\varphi_{j}\rangle|\geq \sqrt{\frac{N-d}{d(N-1)}}.\]
Equality holds if and only if the following two conditions hold:
A collection of equal norm vectors which is both equiangular and tight is known as an equiangular tight frame (ETF). These are also known as Welch bound equality codes.
\(f(x) = \|\Phi x\|_{p}^{p}\)
\(\frac{\|\Phi (x+h)