John Jasper
joint work w/ Joey Iverson, Dustin Mixon, and Staci Davis
AMS Fall Central Sectional
Special Session on Harmonic Analysis, Frame Theory, and Tilings
https://slides.com/johnjasper/amsstlouis/
The views expressed in this talk are those of the speaker and do not reflect the official policy
or position of the United States Air Force, Department of Defense, or the U.S. Government.
Results
Newton-Kantorovich:
"Close is good enough"
Optimal packings as zeros of polynomials
Definition. Given unit vectors \(\Phi=(\varphi_{i})_{i=1}^{N}\), we define the coherence
\[\mu(\Phi) = \max_{i\neq j}|\varphi_{i}^{\ast}\varphi_{j}^{}|.\]
\[\mu(\Phi) = \cos(\theta)\]
\(\mu(\Phi) = \cos(\theta)\)??
\(\mu(\Phi) = \cos(\theta)\)
Definition. Given unit vectors \(\Phi=(\varphi_{i})_{i=1}^{N}\), we define the coherence
\[\mu(\Phi) = \max_{i\neq j}|\varphi_{i}^{\ast}\varphi_{j}^{}|.\]
Definition. Given unit vectors \(\Phi=(\varphi_{i})_{i=1}^{N}\), we define the coherence
\[\mu(\Phi) = \max_{i\neq j}|\varphi_{i}^{\ast}\varphi_{j}^{}|.\]
Minimizing coherence
between vectors
\(\Updownarrow\)
Maximizing min. angle
between lines
Example.
Definition. Given unit vectors \(\Phi=(\varphi_{i})_{i=1}^{N}\), we define the coherence
\[\mu(\Phi) = \max_{i\neq j}| \varphi_{i}^{\ast}\varphi_{j}|.\]
Given \((D,N)\), find \(\Phi = (\varphi_{i})_{i=1}^{N}\subset\mathbb{F}^{D}\) such that \(\mu(\Phi)\) is minimal.
Goal:
Theorem (the Welch bound). For unit vectors \(\Phi=(\varphi_{i})_{i=1}^{N}\) in \(\mathbb{F}^D\)
\[\mu(\Phi)^{2} = \max_{i\neq j}|\varphi_{i}^{\ast}\varphi_{j}^{}|^{2}\geq \frac{N-D}{D(N-1)}.\]
Equality holds if and only if both:
Welch bound equality \(\Longleftrightarrow\) equiangular tight frame (ETF)
Let \[\Phi = \big[\varphi_{1}\ \ \varphi_{2}\ \ \cdots\ \ \varphi_{N}\big]\in \mathbb{F}^{D\times N},\]
be a rank \(D\) matrix where each column \(\varphi_{n}\) has norm one.
Then \(\Phi\) is an ETF iff
(\(\mathbb{F} = \mathbb{C}\) or \(\mathbb{R}\))
\(\displaystyle{\sum_{i=1}^{N}\varphi_{i}\varphi_{i}^{\ast} = \frac{N}{D}\mathbf{I}}.\)
\(\displaystyle{|\varphi_{i}^{\ast}\varphi_{j}^{}|^{2} = \frac{N-D}{D(N-1)}}\) for \(i\neq j\)
Example 2. Consider the (multiple of a) unitary matrix
Example 1. Consider the (multiple of a) unitary matrix
\[\left[\begin{array}{rrrr}1 & -1 & 1 & -1\\ 1 & 1 & -1 & -1\\ 1 & -1 & -1 & 1\end{array}\right]\]
\[\left[\begin{array}{rrrr} 1 & 1 & 1 & 1\\ 1 & -1 & 1 & -1\\ 1 & 1 & -1 & -1\\ 1 & -1 & -1 & 1\end{array}\right]\]
\[\left[\begin{array}{rrrr} 1 & 1 & 1\\ \sqrt{2} & -\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}}\\ 0 & \sqrt{\frac{3}{2}} & -\sqrt{\frac{3}{2}}\end{array}\right]\]
\[\left[\begin{array}{rrrr}\sqrt{2} & -\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}}\\ 0 & \sqrt{\frac{3}{2}} & -\sqrt{\frac{3}{2}}\end{array}\right]\]
\[\frac{1}{\sqrt{2}}\]
\[\frac{1}{\sqrt{2}}\]
Example 3. \(\operatorname{ETF}(6,16)\)
\[\frac{1}{\sqrt{3}}\]
\[\Phi = \left[\begin{array}{cccccc} \varphi_{1,1} & \varphi_{1,2} & \varphi_{1,3} & \cdots & \cdots & \varphi_{1,N}\\ \varphi_{2,1} & \varphi_{2,2} & \varphi_{2,3} & \cdots & \cdots & \varphi_{2,N}\\ \varphi_{3,1} & \varphi_{3,2} & \varphi_{3,3} & \cdots & \cdots & \varphi_{3,N}\\ \vdots & \vdots & \vdots & \ddots & & \vdots\\ \varphi_{D,1} & \varphi_{D,2} & \varphi_{D,3} & \cdots & \cdots & \varphi_{D,N}\end{array}\right] \in\mathbb{R}^{D\times N}\]
Real, but we can do complex too
\(\displaystyle{\sum_{i=1}^{N}\varphi_{i}\varphi_{i}^{\top} = \frac{N}{D}\mathbf{I}}.\)
\(\displaystyle{(\varphi_{i}^{\ast}\varphi_{j}^{})^{2} = \frac{N-D}{D(N-1)}}\) for \(i\neq j\)
is an ETF iff
\[\Leftrightarrow\qquad\qquad\sum_{i=1}^{N}\varphi_{d,i}\varphi_{d',i} = \frac{N}{D}\delta_{d,d'}\ \text{for }d\neq d'\]
\[\Leftrightarrow\quad\sum_{d=1}^{D}\varphi_{d,i}\varphi_{d,j} = \frac{N-D}{D(N-1)}\ \text{for }i\neq j\]
\[\Phi = \left[\begin{array}{cccccc} \varphi_{1,1} & \varphi_{1,2} & \varphi_{1,3} & \cdots & \cdots & \varphi_{1,N}\\ \varphi_{2,1} & \varphi_{2,2} & \varphi_{2,3} & \cdots & \cdots & \varphi_{2,N}\\ \varphi_{3,1} & \varphi_{3,2} & \varphi_{3,3} & \cdots & \cdots & \varphi_{3,N}\\ \vdots & \vdots & \vdots & \ddots & & \vdots\\ \varphi_{D,1} & \varphi_{D,2} & \varphi_{D,3} & \cdots & \cdots & \varphi_{D,N}\end{array}\right] \in\mathbb{R}^{D\times N}\]
is an ETF iff
\[\sum_{i=1}^{N}\varphi_{d,i}\varphi_{d',i} = \frac{N}{D}\delta_{d,d'}\ \text{for }d\neq d'\]
\[\sum_{d=1}^{D}\varphi_{d,i}\varphi_{d,j} = \delta_{i,j}\ \text{for }i\neq j\]
Define polynomial map
\(f:\R^{A}\to\R^{B}\) where
\(f(\Phi)=0\ \Leftrightarrow\ \Phi\) is an ETF
Chordal distance:
\[d_{c}(\mathcal{U}_{i},\mathcal{U}_{j}) = 2^{-1/2}\|\Pi_{i} - \Pi_{j}\|_{\text{Fro}} = \sqrt{R - \|\Phi_{i}^{\ast}\Phi_{j}\|_{\text{Fro}}^{2}}.\]
Measure of "spread outness"
\[\min_{i\neq j}(d_{c}(\mathcal{U}_{i},\mathcal{U}_{j}))^2 = R - \max_{i\neq j}\|\Phi_{i}^{\ast}\Phi_{j}\|_{\text{Fro}}^{2}.\]
\(\Leftrightarrow\) \(\displaystyle{\min_{i\neq j} d_{c}(\mathcal{U}_{i},\mathcal{U}_{j})}\) large \(\Leftrightarrow\) \(\displaystyle{\max_{i\neq j}\|\Phi_{i}^{\ast}\Phi_{j}\|^{2}_{\text{Fro}}}\) small
Subspaces spread out
Theorem (the Welch bound). Suppose
Equality holds if and only if both:
Simplex bound equality \(\Longleftrightarrow\) equichordal tight fusion frame (ECTFF)
Then, \[\max_{i\neq j}\|\Phi_{i}^{\ast}\Phi_{j}\|^{2}_{\text{Fro}}\geq \frac{R(NR-D)}{D(N-1)}\]
Let \[\Phi = \big[\ \Phi_{1}\ \vert\ \Phi_{2}\ \vert\ \cdots\ \vert\ \Phi_{N}\big]\in \big(\mathbb{F}^{D\times R}\big)^{1\times N},\]
Where \(\Phi_{n}\) is an orthonormal basis for \(\mathcal{U}_{n}\)
Then \(\Phi\) is an ECTFF iff
\(\displaystyle{\sum_{n=1}^{N}\Phi_{n}\Phi_{n}^{\ast} = \frac{NR}{D}\mathbf{I}}\)
\(\displaystyle{\|\Phi_{i}^{\ast}\Phi_{j}\|_{\text{Fro}}^{2} =\frac{R(NR-D)}{D(N-1)}\quad\text{for }i\neq j.}\)
Example. ECTFF w/ 10 subspaces of \(\R^{5}\), each of dimension \(5\).
\(\Phi\)
is an ECTFF iff
\[\sum_{n=1}^{N}\sum_{r=1}^{R}\varphi_{d,r,n}\varphi_{d',r,n} = \frac{NR}{D}\delta_{d,d'}\quad \text{for all }d,d'\]
\[\sum_{r=1}^{R}\sum_{r'=1}^{R}\left(\sum_{d=1}^{D}\varphi_{d,r,n}\varphi_{d,r',n'}\right)^{2} = \frac{R(NR-D)}{D(N-1)}\quad \text{for } n\neq n'\]
\[\Phi = \big[\ \Phi_{1}\ \vert\ \Phi_{2}\ \vert\ \cdots\ \vert\ \Phi_{N}\big],\]
\[\left[\begin{array}{ccc|ccc|c|ccc} \varphi_{1,1,1} & \cdots & \varphi_{1,R,1} & \varphi_{1,1,2} & \cdots & \varphi_{1,R,2} & \cdots & \varphi_{1,1,N} & \cdots & \varphi_{1,R,N}\\[1ex] \varphi_{2,1,1} & \cdots & \varphi_{2,R,1} & \varphi_{2,1,2} & \cdots & \varphi_{2,R,2} & \cdots & \varphi_{2,1,N} & \cdots & \varphi_{2,R,N}\\ \vdots & & \vdots & \vdots & & \vdots & & \vdots & & \vdots\\ \varphi_{D,1,1} & \cdots & \varphi_{D,R,1} & \varphi_{D,1,2} & \cdots & \varphi_{D,R,2} & \cdots & \varphi_{D,1,N} & \cdots & \varphi_{D,R,N} \end{array}\right] \]
\[=\]
\(\displaystyle{\sum_{n=1}^{N}\Phi_{n}\Phi_{n}^{\ast} = \frac{NR}{D}\mathbf{I}}\)
\(\Phi_{n}^{\ast}\Phi^{}_{n} = \mathbf{I}_{R}\) for each \(n\)
\(\displaystyle{\|\Phi_{n}^{\ast}\Phi_{n'}\|_{\text{Fro}}^{2} =\frac{R(NR-D)}{D(N-1)}\quad\text{for }n\neq n'.}\)
\[\sum_{d=1}^{D}\varphi_{d,n,r}\varphi_{d,n,r'} = \delta_{r,r'}\text{for all }n,r,r'\]
is an ETF iff
\[\sum_{n=1}^{N}\sum_{r=1}^{R}\varphi_{d,r,n}\varphi_{d',r,n} = \frac{NR}{D}\delta_{d,d'}\quad \text{for all }d,d'\]
\[\sum_{r=1}^{R}\sum_{r'=1}^{R}\left(\sum_{d=1}^{D}\varphi_{d,r,n}\varphi_{d,r',n'}\right)^{2} = \frac{R(NR-D)}{D(N-1)}\quad \text{for } n\neq n'\]
\[\Phi = \big[\ \Phi_{1}\ \vert\ \Phi_{2}\ \vert\ \cdots\ \vert\ \Phi_{N}\big],\]
\[\left[\begin{array}{ccc|ccc|c|ccc} \varphi_{1,1,1} & \cdots & \varphi_{1,R,1} & \varphi_{1,1,2} & \cdots & \varphi_{1,R,2} & \cdots & \varphi_{1,1,N} & \cdots & \varphi_{1,R,N}\\[1ex] \varphi_{2,1,1} & \cdots & \varphi_{2,R,1} & \varphi_{2,1,2} & \cdots & \varphi_{2,R,2} & \cdots & \varphi_{2,1,N} & \cdots & \varphi_{2,R,N}\\ \vdots & & \vdots & \vdots & & \vdots & & \vdots & & \vdots\\ \varphi_{D,1,1} & \cdots & \varphi_{D,R,1} & \varphi_{D,1,2} & \cdots & \varphi_{D,R,2} & \cdots & \varphi_{D,1,N} & \cdots & \varphi_{D,R,N} \end{array}\right] \]
\[=\]
\[\sum_{d=1}^{D}\varphi_{d,n,r}\varphi_{d,n,r'} = \delta_{r,r'}\text{for all }n,r,r'\]
Define polynomial map
\(f:\R^{A}\to\R^{B}\) where
\(f(\Phi)=0\ \Leftrightarrow\ \Phi\) is an ECTFF
Theorem (Newton-Kantorovich) [Cohn, Kumar, Minton '16].
If \(\exists\) linear \(T:W\to V\) such that
\[\|\mathbf{I}_{W} - Df(x)T\|<1-\frac{\|T\|\|f(x_{0})\|}{\varepsilon}\quad\text{for all }x\in B(x_{0},\varepsilon),\]
then \(\exists\, x^{\ast}\in B(x_{0},\varepsilon)\) such that \(f(x^{\ast})=0\).
Plan:
Problems!
How to compute \(\|T\|\)??
How to check (\(\ast\)) for \(\infty\) many \(x\)'s??
(\(\ast\))
Proposition. If \(T:\mathbb{R}^{C}\to\mathbb{R}^{D}\) is linear, both spaces have \(\ell^{\infty}\) norm, then the operator norm
\[\|T\|_{\infty\to\infty} = \max\{\|T_{i}\|_{1} : T_{i}\text{ is a col. of }T\}.\]
Entries of \(T\) in \(\mathbb{Q}\) \(\ \ \implies\ \ \) Can compute\(\|T\|_{\infty\to\infty}\) exactly
Theorem [Cohn, Kumar, Minton '16]. Suppose \(\varepsilon>0\), \(C\geq D\), \(x_{0}\in\R^{C}\)
Then, \(\forall\, x\in B(x_{0},\varepsilon)\)
\[\|Df(x) - Df(x_{0})\|_{\infty\to\infty}\leq |f|d(d-1)\varepsilon\eta^{d-2}.\]
Corollary. Suppose \(f\) is as above. If there exists \(\varepsilon>0\), \(x_{0}\in \R^{C}\), and linear \(T:\R^{D}\to \R^{C}\) such that
\[\|Df(x_0) T - \mathbf{I}\|_{\infty\to\infty}+ \varepsilon|f|d(d-1)\eta^{d-2}\|T\| _{\infty\to\infty}< 1-\frac{\|T\|_{\infty\to\infty} \|f(x_0)\|}{\varepsilon},\]
then \(\exists\,x^{\ast}\) such that \(f(x^{\ast})=0\).
\[\begin{array}{|c|c|c|} \hline D & R & N\\ \hline 4 & 2 & 4,5-6 \\ 5 & 2 & 5-10 \\ 6 & 2 & 5-14 \\ 6 & 3 & 5-16 \\ 7 & 2 & 6-17 \\ 7 & 3 & 5-22 \\ 8 & 2 & 6-21 \\ 8 & 3 & 5-28 \\ 8 & 4 & 5-30 \\ 9 & 2 & 7-24 \\ 9 & 3 & 5-34 \\ 9 & 4 & 5-38 \\ 10 & 2 & 8-27 \\ 10 & 3 & 5-40 \\ 10 & 4 & 5-46 \\ 10 & 5 & 5-48 \\ \hline \end{array}\]
Theorem. For each entry in the table
\(\exists\) ECTFF with \(N\) subpaces, each with dimension \(R\) in \(\R^{D}\).
For each \((D,R)\), these are the expected \(N\)'s.
\(\# \)constraints\(\,<\#\)variables
\(d\)'s in boxes due to Fallon, Iverson, J, and Mixon
The \(11\times 22\) ETF found by Fallon and Iverson:
Real part
Imaginary part
Real part
Imaginary part
The \(17\times 34\) ETF found by Iverson, J, Mixon:
Conjecture (strong(ish) \(d\times 2d\) conjecture) [Iverson, J, Mixon]. For each \(d\), there exists a 2-circulant \(d\times 2d\) ETF.
Full conjecture gives dim. of manifold
Theorem [Iverson, J, Mixon]. The strong \(d\times 2d\) conjecture holds for \(d\leq 162\).
\[C_{\mathbf{x}} = \left[\begin{array}{ccccc} x_{0} & x_{d-1} & x_{d-2} & \cdots & x_{1}\\ x_{1} & x_{0} & x_{d-1} & \cdots & x_{2}\\ x_{2} & x_{1} & x_{0} & \cdots & x_{3}\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{d-1} & x_{d-2} & x_{d-3} & \cdots & x_{0} \end{array}\right]\]
For \(\mathbf{x}\in \mathbb{C}^{d}\),
We want \(\mathbf{x},\mathbf{y}\in\mathbb{C}^{d}\) such that \(\Phi = [C_{\mathbf{x}}\ \ C_{\mathbf{y}}]\) is an ETF.
Make a polynomial map \(f\) such that \(f(\mathbf{x},\mathbf{y})=0\ \Leftrightarrow [C_{\mathbf{x}}\ \ C_{\mathbf{y}}]\) is an ETF.
Apply Newton-Kantorovich to \(f\).