John Jasper
Air Force Institute of Technology
(w/ Matthew Fickus, Joseph W. Iverson, Dustin G. Mixon)
The views expressed in this talk are those of the speaker and do not reflect the official policy
or position of the United States Air Force, Department of Defense, or the U.S. Government.
August 30, 2022
\(d\)
Definition. Let \[\Phi = \big[\varphi_{1}\ \ \varphi_{2}\ \ \cdots\ \ \varphi_{N}\big]\in \mathbb{F}^{d\times N},\]
where each column \(\varphi_{n}\) is unit norm
\[\|\varphi_{n} \|^{2}=1.\]
1) (Tightness) \(\exists\,A>0\) such that \((\Phi^{\ast}\Phi)^{2} = A\Phi^{\ast}\Phi\).
2) (Equiangular) \(\exists\,B>0\) such that \(|\frac{1}{B}\varphi_{m}^{\ast}\varphi_{n}^{}|=1\) for \(m\neq n\).
If both 1) and 2) hold, then \(\{\varphi_{n}\}_{n=1}^{N}\) is an ETF(\(d,N)\).
\[\Phi^{\ast}\Phi = \left[\begin{array}{cccc} 1 & \varphi_{1}^{\ast}\varphi_{2} & \cdots & \varphi_{1}^{\ast}\varphi_{N}\\[1ex] \varphi_{2}^{\ast}\varphi_{1} & 1 & \cdots & \varphi_{2}^{\ast}\varphi_{N}\\[1ex] \vdots & \vdots & \ddots & \vdots\\[1ex] \varphi_{N}^{\ast}\varphi_{1} & \varphi_{N}^{\ast}\varphi_{2} & \cdots & 1\end{array}\right]\]
\(1\)'s down the diagonal
1) \(\Phi^{\ast}\Phi \propto\) projection
2) \(|\varphi_{m}^{\ast}\varphi_{n}^{}|\) constant
Definition. Let \[\Phi = \big[\Phi_{1}\ \ \Phi_{2}\ \ \cdots\ \ \Phi_{N}\big]\in(\mathbb{F}^{d\times r})^{1\times N},\]
where the columns of each \(\Phi_{n}\) form ONB for a subspace (w/ dim\(=r\))
\[\Phi_{n}^{\ast}\Phi_{n} = \boldsymbol{I}.\]
1) (Tightness) \(\exists\,A>0\) such that \((\Phi^{\ast}\Phi)^{2} = A\Phi^{\ast}\Phi\).
2) (Equi-isoclinic) \(\exists\,B>0\) such that \(\frac{1}{B}\Phi_{m}^{\ast}\Phi_{n}\) is unitary for \(m\neq n\).
If both 1) and 2) hold, then \(\{\Phi_{n}\}_{n=1}^{N}\) is an EITFF(\(d,N,r)\).
\[\Phi^{\ast}\Phi = \left[\begin{array}{cccc} \boldsymbol{I} & \Phi_{1}^{\ast}\Phi_{2} & \cdots & \Phi_{1}^{\ast}\Phi_{N}\\[1ex] \Phi_{2}^{\ast}\Phi_{1} & \boldsymbol{I} & \cdots & \Phi_{2}^{\ast}\Phi_{N}\\[1ex] \vdots & \vdots & \ddots & \vdots\\[1ex] \Phi_{N}^{\ast}\Phi_{1} & \Phi_{N}^{\ast}\Phi_{2} & \cdots & \boldsymbol{I}\end{array}\right]\]
Identities down the diagonal
1) \(\Phi^{\ast}\Phi \propto\) projection
2) \(\Phi_{m}^{\ast}\Phi_{n}\propto\) unitaries
Take my favorite ETF, an ETF\((3,4)\):
\[\Phi = \frac{1}{\sqrt{3}}\left[\begin{array}{cccc} + & - & + & -\\ + & + & - & -\\ + & - & - & +\end{array}\right]\]
1) (ETFs) \(\Phi\) is an EITFF\((3,4,1)\)
2) (Tensors) \(\Phi\otimes\boldsymbol{I} = \dfrac{1}{\sqrt{3}}\left[\begin{array}{cc|cc|cc|cc} + & 0 & - & 0 & + & 0 & - & 0\\ 0 & + & 0 & - & 0 & + & 0 & -\\ + & 0 & + & 0 & - & 0 & - & 0\\ 0 & + & 0 & + & 0 & - & 0 & -\\ + & 0 & - & 0 & - & 0 & + & 0\\ 0 & + & 0 & - & 0 & - & 0 & + \end{array}\right]\)
\[\exists\,\operatorname{EITFF}(d,N,r)\quad\Rightarrow\quad \exists\,\operatorname{EITFF}(md,N,mr)\]
\[\exists\,\operatorname{ETF}(d,N)\quad\Leftrightarrow\quad\exists\,\operatorname{EITFF}(d,N,1)\]
We call these "tensor-sized"
is an EITFF\((6,4,2)\)
\[\Phi^{\ast}\Phi=\frac{1}{4}\left[\begin{array}{lllllllll}4&1&1&1&\omega&\omega^2&1&\omega&\omega^2\\1&4&1&\omega^2&1&\omega&\omega&\omega^2&1\\1&1&4&\omega&\omega^2&1&\omega^2&1&\omega\\1&\omega&\omega^2&4&1&1&1&\omega^2&\omega\\\omega^2&1&\omega&1&4&1&\omega&1&\omega^2\\\omega&\omega^2&1&1&1&4&\omega^2&\omega&1\\1&\omega^2&\omega&1&\omega^2&\omega&4&1&1\\\omega^2&\omega&1&\omega&1&\omega^2&1&4&1\\\omega&1&\omega^2&\omega^2&\omega&1&1&1&4\end{array}\right]\]
3) (\(\mathbb{C}\) to \(\mathbb{R}\) trick) Take \(\Phi\) to be an \(\operatorname{ETF}(6,9)\) with
(\(\omega=\exp(\frac{2\pi i}{3})\))
Replace: \(R\exp(\theta i)\mapsto R\left[\begin{array}{cc}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{array}\right]\)
We obtain the Gram matrix of a real EITFF\((12,9,2)\)
\[\frac{1}{4}\]
Tensor-sized, but no real ETF\((6,9)\) exists.
\[\boldsymbol{S} = B\big(\Phi^{\ast}\Phi-\boldsymbol{I}\big) = \left[\begin{array}{cccc} \boldsymbol{0} & B\Phi_{1}^{\ast}\Phi_{2} & \cdots & B\Phi_{1}^{\ast}\Phi_{N}\\[1ex] B\Phi_{2}^{\ast}\Phi_{1} & \boldsymbol{0} & \cdots & B\Phi_{2}^{\ast}\Phi_{N}\\[1ex] \vdots & \vdots & \ddots & \vdots\\[1ex] B\Phi_{N}^{\ast}\Phi_{1} & B\Phi_{N}^{\ast}\Phi_{2} & \cdots & \boldsymbol{0}\end{array}\right]\]
\[= \left[\begin{array}{cccc} \boldsymbol{0} & U_{1,2} & \cdots & U_{1,N}\\[1ex] U_{2,1} & \boldsymbol{0} & \cdots & U_{2,N}\\[1ex] \vdots & \vdots & \ddots & \vdots\\[1ex] U_{N,1} & U_{N,2} & \cdots & \boldsymbol{0}\end{array}\right]\]
\[\boldsymbol{S}^{2}= B(A-2)\boldsymbol{S}+B^{2}(A-1)\boldsymbol{I}\]
\[\boldsymbol{S}^{2} = B^{2}\big((\Phi^{\ast}\Phi)^{2} - 2\Phi^{\ast}\Phi + \boldsymbol{I}\big) = B^{2}\big((A-2)\Phi^{\ast}\Phi +\boldsymbol{I}\big)\]
\[B(A-2)\big(B\Phi^{\ast}\Phi-B\boldsymbol{I}+B\boldsymbol{I}\big) + B^2\boldsymbol{I} = B(A-2)\boldsymbol{S}+B^{2}(A-1)\boldsymbol{I}\]
Suppose \(\Phi = [\Phi_{i}]_{i=1}^{N}\) is an EITFF
is called the signature matrix of the EITFF.
It's a symmetric block matrix with
\(\textbf{A}=\)
\(\textbf{A}=\)
\(\textbf{A}^{2}=\)
\(= 4\boldsymbol{I}_{15} + \boldsymbol{J}_{15} - (\boldsymbol{I}_{5}\otimes\boldsymbol{J}_{3})\)
\[\mathbf{A}^{2} = (N-Rc-2)\mathbf{A} + (N-1)\boldsymbol{I}_{NR} + c(\boldsymbol{J}_{N}-\boldsymbol{I}_{N})\otimes \boldsymbol{J}_{R}.\]
An \((N,R,c)\)-DRACKn is a block matrix
\[\mathbf{A} = \left[\begin{array}{cccc} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} & \cdots & \mathbf{A}_{1,N}\\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} & \cdots & \mathbf{A}_{2,N}\\ \vdots & \vdots & \ddots & \vdots\\ \mathbf{A}_{N,1} & \mathbf{A}_{N,2} & \cdots & \mathbf{A}_{N,N}\end{array}\right]\]
Let \(\Gamma\) be the permutation group generated by \(\{\mathbf{A}_{i,j}\}_{i\neq j}\).
\(\textbf{A}=\)
\[\mathbf{A}_{1,2}=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1\\ 0 & 1 & 0\end{array}\right]\cong (23)\in S_{3}\]
\[\mathbf{A}_{1,4}=\left[\begin{array}{ccc} 0 & 1 & 0\\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\cong (12)\in S_{3}\]
\[\mathbf{A}_{2,3}=\left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0\\ 1 & 0 & 0\end{array}\right]\cong (13)\in S_{3}\]
\(\Gamma = \langle \mathbf{A}_{1,4},\mathbf{A}_{1,2},\mathbf{A}_{2,3}\rangle\cong S_{3}\) since \(\langle (12),(23),(13)\rangle = S_{3}\)
\(\Pi(\mathbf{A}_{1,2}) = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1\\ 0 & 1 & 0\end{array}\right]\)
\(\Pi(\mathbf{A}_{2,3}) = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0\\ 1 & 0 & 0\end{array}\right]\)
\(\Pi(\mathbf{A}_{1,4}) = \left[\begin{array}{ccc} 0 & 1 & 0\\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\)
The inclusion \(\Pi:\Gamma\hookrightarrow U(3)\) is a representation of \(\Gamma\)
\(\pi(23) = \left[\begin{array}{rr} 1 & 0\\ 0 & -1\end{array}\right]\)
\(\pi(13) = \dfrac{1}{2}\left[\begin{array}{rr}\hspace{-10px}-1 & -\sqrt{3}\\\hspace{-5px}-\sqrt{3} & 1\end{array}\right]\)
\(\pi(12) = \dfrac{1}{2}\left[\begin{array}{rr}\hspace{-10px}-1 & \sqrt{3}\\\hspace{-5px}\sqrt{3} & 1\end{array}\right]\)
is an irreducible representation of \(S_{3}\cong D_{6}\)
Given a repn \(\pi\) of \(\Gamma\cong S_{3}\) we set
\(\hat{\pi}(\mathbf{{A}})=\)
Note that \(\hat{\Pi}(\mathbf{A}) = \mathbf{A}\)
However, \(\Pi\cong \pi\oplus \mathbf{1}\), where \(\mathbf{1}\) is the trivial representation, and
\(\mathbf{S}: = \hat{\pi}(\mathbf{\hat{A}}) = \)
does satisfy a quadratic! \[\mathbf{S}^{2} = 4\boldsymbol{I}_{10}\]
Thus \(\mathbf{S}\) is the signature matrix of an EITFF\((5,5,2)\).
Theorem. (cf. Godsil,Hensel 1992) Let \(\mathbf{A}\) be an \((N,R,c)\)-DRACKn with permutation group \(\Gamma\). If \(\pi\) is any degree \(r\) constituent of the inclusion \(\Gamma\hookrightarrow U(R)\) that does not have the trivial repn as a constituent, then \(\hat{\pi}(\mathbf{A})\) is the signature matrix of an EITFF\((d,N,r)\).
Theorem. (Mathon 1975) For any prime power \(q\) there exists a \((q+1,q-1,1)\)-DRACKn with permutation group \(\Gamma\cong D_{2(q-1)}\).
Corollary. (Fickus,Iverson,J,Mixon '22) For any prime power \(q\geq 4\) there exists an EITFF\((q+1,q+1,2)\).
Goal: Find
Example. Let \(\mathcal{G} = \mathbb{Z}_{7} = \{0,1,2,3,4,5,6\}\),
\[\pi(g) = \begin{bmatrix} 1 & 0 & 0\\ 0 & e^{2\pi i g/7} & 0\\ 0 & 0 & e^{2 \pi i 3g/7}\end{bmatrix},\]
and \(\Phi_{0}= [1\ \ 1\ \ 1]^{\top}/\sqrt{3}\).
\(\Phi=\)
such that \(\{\pi(g)\Phi_{0}\}_{g\in\mathcal{G}}\) is an EITFF.
Example 2. Let \(\mathcal{G} = \mathbb{Z}_{5} = \{0,1,2,3,4\}\) and \(\omega=\exp(2\pi i/5)\).
\[\Psi = \big[\begin{array}{c|c|c|c|c} \Psi_{0} & \Psi_{1} & \Psi_{2} & \Psi_{3} & \Psi_{4}\end{array}\big] = \frac{1}{\sqrt{2}}\left[\begin{array}{c|c|c|c|c}\cdot & 1 & 1 & 1 & 1\\ \cdot & 1 & i & -i & -1\end{array}\right]\]
\[\Phi_{g}\doteq\pi(g)\Psi^{\ast}\doteq\left[\begin{array}{ccccc}\hspace{-5px}1 \boldsymbol{I}_{0}&&&&\\&\hspace{-5px}\omega^{g} \boldsymbol{I}_{1}&&&\\&&\hspace{-5px}\omega^{2g} \boldsymbol{I}_{1}&&\\&&&\hspace{-5px}\omega^{3g} \boldsymbol{I}_{1}&\\&&&&\hspace{-5px}\omega^{4g} \boldsymbol{I}_{1}\end{array}\right]\left[\begin{array}{cc}\cdot & \cdot\\\hline 1 & 1\\\hline 1 & -i\\\hline 1 & i\\\hline 1 & -1 \end{array}\right]\]
\[=\frac{1}{2}\left[\begin{array}{cc|cc|cc|cc|cc}1&1&\mu^{4}&\mu^{4}&\mu^{8}&\mu^{8}&\mu^{12}&\mu^{12}&\mu^{16}&\mu^{16}\\1&\mu^{15}&\mu^{8}&\mu^{3}&\mu^{16}&\mu^{11}&\mu^{4}&\mu^{19}&\mu^{12}&\mu^{7}\\1&\mu^{5}&\mu^{12}&\mu^{17}&\mu^{4}&\mu^{9}&\mu^{16}&\mu^{1}&\mu^{8}&\mu^{13}\\1&\mu^{10}&\mu^{16}&\mu^{6}&\mu^{12}&\mu^{2}&\mu^{8}&\mu^{18}&\mu^{4}&\mu^{14}\end{array}\right]\]
\[\Phi_{g}\doteq\pi(g)\Psi^{\ast}\doteq\left[\begin{array}{cccc}&\hspace{-5px}\omega^{g} \boldsymbol{I}_{1}&&&\\&&\hspace{-5px}\omega^{2g} \boldsymbol{I}_{1}&&\\&&&\hspace{-5px}\omega^{3g} \boldsymbol{I}_{1}&\\&&&&\hspace{-5px}\omega^{4g} \boldsymbol{I}_{1}\end{array}\right]\left[\begin{array}{cc} 1 & 1\\ 1 & -i\\ 1 & i\\ 1 & -1 \end{array}\right]\]
\[\Phi = \big[\ \Phi_{0}\ \ \vert\ \ \Phi_{1}\ \ \vert\ \ \Phi_{2}\ \ \vert\ \ \Phi_{3}\ \ \vert\ \ \Phi_{4}\ \big]\]
\(\big(\mu = \exp(2\pi i/20)\big)\)
For each \(\chi\in\hat{\mathcal{G}}\) the matrix \(\Psi_{\chi}\) is an \(r\times D_{\chi}\) matrix. (\(D_{\chi}\) could be zero!)
Start with:
Characters: \(\hat{\mathcal{G}} = \{\chi_{0},\chi_{1},\ldots,\chi_{N-1}\}\)
\[\pi(g) := \bigoplus_{\chi\in\hat{\mathcal{G}}}\chi(g)\boldsymbol{I}_{D_{\chi}} = \left[\begin{array}{ccccc}\hspace{-2px}\chi_{0}(g) \boldsymbol{I}_{D_{\chi_{0}}}&&&&\\&\hspace{-10px}\chi_{1}(g) \boldsymbol{I}_{D_{\chi_{1}}}&&&\\&&\hspace{-10px}\chi_{2}(g) \boldsymbol{I}_{D_{\chi_{2}}}&&\\&&&\hspace{-15px}\ &\\&&&&\hspace{-10px}\chi_{N-1}(g) \boldsymbol{I}_{D_{\chi_{N-1}}}\hspace{-2px}\end{array}\right]\]
Harmonic TFF generated by \(\Psi\):
\[\Phi \doteq\left[\begin{array}{c|c|c|c|c} \pi(g_{0})\Psi^{\ast} & \pi(g_{1})\Psi^{\ast} & \pi(g_{2})\Psi^{\ast} & \cdots & \pi(g_{N-1})\Psi^{\ast}\end{array}\right]\]
\(\ddots\)
Harmonic TFF generated by \(\Psi\):
\[\Phi \doteq \left[\begin{array}{c|c|c|c|c} \pi(g_{0})\Psi^{\ast} & \pi(g_{1})\Psi^{\ast} & \pi(g_{2})\Psi^{\ast} & \cdots & \pi(g_{N-1})\Psi^{\ast}\end{array}\right]\]
Set \(\Phi_{g} \doteq \pi(g)\Psi^{\ast}\).
\[\Phi_{g}^{\ast}\Phi_{h}^{} \doteq (\pi(g)\Psi^{\ast})^{\ast}(\pi(h)\Psi^{\ast}) = \Psi\pi(g^{-1})\pi(h)\Psi^{\ast} \doteq \Phi_{g_{0}}^{\ast}\Phi_{h^{-1}g}^{}\]
Cross-Grams:
The Gram matrix is block circulant.
Also,
\[\Phi_{g_{0}}^{\ast}\Phi_{g} \doteq \sum_{\chi\in\hat{\mathcal{G}}}\chi(g)\Psi_{\chi}\Psi_{\chi}^{\ast} = \sum_{\chi\in\hat{\mathcal{G}}}\chi(g)\mathbf{P}_{\chi}=:\mathbf{M}_{g}\]
\(\mathbf{P}_{\chi}\) is the projection onto \(\operatorname{ran}\Psi_{\chi}\)
\(\mathbf{M}_{g}\) is the entrywise Fourier transform of the \(\mathbf{P}_{\chi}\)'s.
Theorem (Fickus,Iverson,J,Mixon '21) Suppose
Then,
Example 2 (redux). Let \(\mathcal{G} = \mathbb{Z}_{5} = \{0,1,2,3,4\}\) and \(\omega=\exp(2\pi i/5)\).
\[\Psi = \big[\begin{array}{c|c|c|c|c} \Psi_{0} & \Psi_{1} & \Psi_{2} & \Psi_{3} & \Psi_{4}\end{array}\big] = \frac{1}{\sqrt{2}}\left[\begin{array}{c|c|c|c|c}\cdot & 1 & 1 & 1 & 1\\ \cdot & 1 & i & -i & -1\end{array}\right]\]
\[=\frac{1}{2}\left[\begin{array}{cc}-1 & \omega^{-k}-i\omega^{-2k}+i\omega^{-3k}-\omega^{-4k}\\\omega^{-k}+i\omega^{-2k}-i\omega^{-3k}-\omega^{-4k} & -1\end{array}\right]\]
\[\mathbf{P}_{0} = \begin{bmatrix}0&0\\0&0\end{bmatrix}\]
\[\mathbf{P}_{1} = \frac{1}{2}\begin{bmatrix}1&1\\1&1\end{bmatrix}\]
\[\mathbf{P}_{2} = \frac{1}{2}\begin{bmatrix}1&-i\\i&1\end{bmatrix}\]
\[\mathbf{P}_{3} = \frac{1}{2}\begin{bmatrix}1&i\\-i&1\end{bmatrix}\]
\[\mathbf{P}_{4} = \frac{1}{2}\begin{bmatrix}1&-1\\-1&1\end{bmatrix}\]
\[\mathbf{M}_{k} = \sum_{j=0}^{4}\omega^{-jk}\mathbf{P}_{j}\]
Indeed, \(\mathbf{M}_{k}^{\ast}\mathbf{M}_{k}^{} = \frac{3}{2}\boldsymbol{I}_{2}\) for each nonzero \(k\in\mathbb{Z}_{5}\).
Therefore \(\Phi\) is a EITFF\((4,5,2)\) (five two-dimensional subspaces of \(\mathbb{C}^{4}\))
Example 1 (redux). Let \(\mathcal{G} = \mathbb{Z}_{7} = \{0,1,2,3,4,5,6\}\) and \(\omega=\exp(2\pi i/7)\)
\[\Psi = \big[\begin{array}{c|c|c|c|c|c|c} \Psi_{0} & \Psi_{1} & \Psi_{2} & \Psi_{3} & \Psi_{4} & \Psi_{5} & \Psi_{6}\end{array}\big] = \big[\begin{array}{c|c|c|c|c|c|c} 1 & 1 & \cdot & 1 & \cdot & \cdot & \cdot\end{array}\big]\]
\[\mathbf{P}_{0} = \begin{bmatrix}1\end{bmatrix},\ \mathbf{P}_{1} = \begin{bmatrix}1\end{bmatrix},\ \mathbf{P}_{2} = \begin{bmatrix}0\end{bmatrix},\ \mathbf{P}_{3} = \begin{bmatrix}1\end{bmatrix},\ \mathbf{P}_{4} = \begin{bmatrix}0\end{bmatrix},\ \mathbf{P}_{5} = \begin{bmatrix}0\end{bmatrix},\ \mathbf{P}_{6} = \begin{bmatrix}0\end{bmatrix}\]
\[\mathbf{M}_{k} = \omega^{0k}+\omega^{-k}+\omega^{-3k}\]
\(\mathbf{M}_{k}\) has the same modulus for all \(k\neq 0\)
The Fourier transform of \([1\ \ 1\ \ 0\ \ 1\ \ 0\ \ 0\ \ 0]^{\top}\) is "spike+flat"
\(\{0,1,3\}\) is a difference set in \(\mathbb{Z}_{7}\).
\(\Updownarrow\)
\(\Updownarrow\)
Theorem. (Fickus, Iverson, J, Mixon '21) Write \(\mathbb{F}_{q}^{\times} = \langle \alpha\rangle = \{\alpha^{j}\}_{j=0}^{q-2}\)
Subspaces \(\mathcal{W}=\{W_{i}\}_{i=1}^{N}\) in \(\mathbb{R}^{d}\) have a group of symmetries
\[\operatorname{Sym}(\mathcal{W}): = \{\text{permutations of }\mathcal{W}\text{ by orthogonal maps}\}.\]
Goal: Find totally symmetric subspaces, i.e., \(\operatorname{Sym}(\mathcal{W}) = S_{N}\).
Plan:
"Symmetry encourages optimality"
Example.
\(W\)
Irr Reps of \(S_{N}\qquad\qquad\qquad\) Young diagrams
\(1-1\)
\(\longleftrightarrow\)
\(\pi\cong\)
\(\Rightarrow\)
\(\pi|_{\operatorname{stab}(N)}\cong\)
\(\oplus\)
\(\oplus\)
Each summand in \(\pi|_{\operatorname{stab}(N)}\) gives a choice of \(W\).
Theorem. (Fickus,Iverson,J,Mixon '21) These families give EITFFs
Diagram + Extremal cell = totally symmetric subspaces
When are they equi-isoclinic?
"rectangle \(+\) cell"
"rectangle \(-\) square \(+\) cell"
\((5,5,2)\)
\((14,7,5)\)
\((16,6,6)\)
\((90,8,20)\)
\((42,9,14)\)
\((210,10,42)\)
\((168,9,56)\)
\((448,10,70)\)
Using the Hook length formula we calculate \((d,N,r)\):
\((14,7,5)\)
\((90,8,20)\)
\((448,10,70)\)
New EITFF parameters!
\(\pi:=\pi_{1}\oplus\pi_{2}\) where
\(\pi_{1}\cong\)
, \(\pi_{2}\cong\)
\(\rho\cong\)
is a constituent of both \(\pi_{1}|_{\operatorname{stab}(N)}\) and \(\pi_{2}|_{\operatorname{stab}(N)}\)
\(\Rightarrow\) \(r\)-dim \(\rho\)-invariant subspaces \(W_{1}\subset\mathbb{R}^{d_{1}}\) and \(W_{2}\subset\mathbb{R}^{d_{2}}\)
\(\rho\) acts on \(W_{1}\) and \(W_{2}\) simultaneously relative to the ONBs
\[\{b_{1,i}\}_{i=1}^{r}\subset W_{1}\quad\text{and}\quad \{b_{2,i}\}_{i=1}^{r}\subset W_{2}\]
Set \(W:=\operatorname{span}\{\sqrt{d_{1}}b_{1,i}\oplus \sqrt{d_{2}}b_{2,i}\}_{i=1}^{r}\).
When is it an EITFF?
Infinitely often!
\(\pi(S_{N})\cdot W\) is a totally symmetric TFF.
Can we take \(\pi\) to be reducible? Yes! For example:
"One red box": See previous examples.
"Two red boxes":
\(\oplus\)
\((42900, 13, 7700)\)
\(\oplus\)
\((∼ 10^{11}, 25, ∼ 10^{8})\)
"Three red boxes": \(N\sim 7\cdot 10^{12},\ 10^{10^{13}}<r<d<10^{10^{14}}\)
(found using CAD \(+\) group law)