Rank Nullity
Theorem. The following quantities are equal:
Proof. The only thing we need to show is that \(\text{rref}(A)\) and \(\text{rref}(A^{\top})\) have the same number of pivots. But we'll actually show that \(\dim C(A^{\top})\) equals the number of pivots in \(\operatorname{rref}(A)\).
Theorem. If \(A\) is any matrix, then \(C(A^{\top}) = C(\operatorname{rref}(A)^{\top})\).
Let's recall the following useful theorem:
Example. \[A = \left[\begin{array}{rrrr} 2 & \phantom{-}4 & -2 & 8\\ 1 & 2 & 2 & -5\\ 1 & 2 & 0 & 1\end{array}\right]\]
\[\operatorname{rref}(A) = \left[\begin{array}{rrrr} 1 & \phantom{-}2 & \phantom{-}0 & 1\\ 0 & 0 & 1 & -3\\ 0 & 0 & 0 & 0\end{array}\right]\]
Since \(\left\{\begin{bmatrix} 2\\ 1\\ 1\end{bmatrix},\begin{bmatrix}-2\\ 2\\ 0\end{bmatrix}\right\}\) is a basis for \(C(A)\) we see that
\[\#\text{ pivots in }\operatorname{rref}(A) = \dim C(A)\]
Since \(C(A^{\top}) = C(\operatorname{rref}(A)^{\top})\), and hence \(\left\{\begin{bmatrix} 1\\ 2\\ 0\\ 1\end{bmatrix},\begin{bmatrix} 0\\ 0\\ 1\\ -3\end{bmatrix}\right\}\) spans \(C(A^{\top})\).
This set is also clearly independent, and hence is a basis for \(C(A^{\top})\). Hence
\[\dim(C(A^{\top}) = \#\text{ pivots in }\operatorname{rref}(A).\]
Proof. Let \(A\) be a matrix, and let \(w_{1}^{\top},w_{2}^{\top},\ldots,w_{\ell}^{\top}\) denote the nonzero rows of \(\operatorname{rref}(A)\), that is,
\[\operatorname{rref}(A) = \begin{bmatrix} - & w_{1}^{\top} & -\\ - & w_{2}^{\top} & -\\ & \vdots & \\ - & w_{\ell}^{\top} & -\\ - & 0 & -\\ & \vdots & \\ - & 0 & -\end{bmatrix}.\]
Each nonzero row contains a unique pivot, hence
\[\ell = \#\text{ pivots in }\operatorname{rref}(A).\]
Since \(C(A^{\top}) = C(\operatorname{rref}(A)^{\top})\), we deduce that \(\{w_{1},w_{2},\ldots,w_{\ell}\}\) spans \(C(A^{\top})\). However, looking at the pivots we see that is \(\{w_{1},w_{2},\ldots,w_{\ell}\}\) independent, and hence a basis for \(C(A^{\top}\), that is, \(\ell = \dim C(A^{\top})\). \(\Box\)
Theorem. The following quantities are equal:
Corollary. The subspaces \(C(A)\) and \(C(A^{\top})\) have the same dimension.
Caution: \(C(A)\) and \(C(A^{\top})\) are almost never the same subspace. Indeed, if \(A\) is \(m\times n\), then \(C(A)\) is a subspace of \(\R^{m}\) and \(C(A^{\top})\) is a subspace of \(\R^{n}\).
Definition. Given a matrix \(A\in\mathbb{R}^{m\times n}\), the dimension of the null space of \(A\) is called the nullity of \(A\), and is denoted \(\operatorname{nullity}(A).\)
Hence, we now have at least three symbols for the same quantity:
\[\dim N(A) = \dim\operatorname{ker}(A) = \operatorname{nullity}(A).\]
We have already claimed that the nullity of \(A\) is equal to the number of non-pivot columns in \(\operatorname{rref}(A)\). Then next theorem shows that this is true.
Lemma. If \(A\in\mathbb{R}^{m\times n}\), then \(C(A^{\top}) \cap N(A) = \{0\}.\)
Proof. Suppose \(x\in C(A^{\top})\) and \(x\in N(A)\). By the definition of the row space there is some \(y\in\mathbb{R}^{m}\) such that \(x=A^{\top}y\). Multiplying by \(A\) on both sides we have
\[0 = Ax = AA^{\top}y.\]
Multiplying on the left by \(y^{\top}\) we obtain
\[ 0 = y^{\top} 0 = y^{\top}AA^{\top}y = (A^{\top}y)^{\top}(A^{\top}y) = x^{\top}x.\]
Now, suppose \(x = [x_{1}\ \ x_{2}\ \ \cdots\ \ x_{n}]^{\top}\). This last equality shows that
\[x_{1}^{2} + x_{2}^{2} + \cdots + x_{n}^{2} = 0,\]
which clearly implies \(x=0\). \(\Box\)
Theorem (The Rank-nullity theorem). If \(A\) is an \(m\times n\) matrix, then \[\text{rank}(A) + \operatorname{nullity}(A) = n.\]
Proof.
Proof continued.
Theorem (The Rank-nullity theorem). If \(A\) is an \(m\times n\) matrix, then \[\text{rank}(A) + \operatorname{nullity}(A) = n.\]
Proof continued.
Theorem (The Rank-nullity theorem). If \(A\) is an \(m\times n\) matrix, then \[\text{rank}(A) + \operatorname{nullity}(A) = n.\]
Example 2. For matrices \(A\in\mathbb{R}^{m\times n}\) such that \(\operatorname{rank}(A) = n\), it _____________ holds that \(\operatorname{nullity}(A) = 0\).
Fill in the blank with always, sometimes, or never:
always
Example 3. For matrices \(A\in\mathbb{R}^{m\times n}\) such that \(\operatorname{rank}(A) = m\) and \(n\leq m\) it _____________ holds that \(\operatorname{nullity}(A) = 0\).
always
Example 1. For matrices \(A\in\mathbb{R}^{3\times 4}\) such that \(\operatorname{rank}(A) = 3\), it _____________ holds that \(\operatorname{nullity}(A) = 1\).
always
Example 4. For matrices \(A\in\mathbb{R}^{m\times n}\) such that \(m<n\), it _____________ holds that \(\operatorname{nullity}(A) = \operatorname{nullity}(A^{\top})\).
never
Theorem 1. \(\text{rank}(AB)\leq \min\{\text{rank}(A),\text{rank}(B)\}\).
Proof.
Theorem 2. \(\text{rank}(A+B)\leq \text{rank}(A) + \text{rank}(B)\).
Proof.
Lemma. \(N(A)=N(A^{\top}A).\)
Proof. First we show that \(N(A)\subset N(A^{\top}A)\).
Next, we show the reverse inclusion \(N(A)\supset N(A^{\top}A).\)
Theorem 3. \(\text{rank}(A^{\top}A)=\text{rank}(AA^{\top}) = \text{rank}(A) = \text{rank}(A^{\top})\).
Proof.