More rank theorems
Theorem 1. \(\text{rank}(AB)\leq \min\{\text{rank}(A),\text{rank}(B)\}\).
Proof.
Theorem 2. \(\text{rank}(A+B)\leq \text{rank}(A) + \text{rank}(B)\).
Proof.
Lemma. \(N(A)=N(A^{\top}A).\)
Proof. First we show that \(N(A)\subset N(A^{\top}A)\).
Next, we show the reverse inclusion \(N(A)\supset N(A^{\top}A).\)
Theorem 3. \(\text{rank}(A^{\top}A)=\text{rank}(AA^{\top}) = \text{rank}(A) = \text{rank}(A^{\top})\).
Proof.
Theorem. Let \(A\) be an \(m\times n\) matrix. Let \(I\) be an \(m\times m\) identity matrix. If
\[\text{rref}([A\ |\ I]) = [D\ |\ B]\]
then \(BA=\text{rref}(A)\).
Proof. Note that \[\text{rref}([A\ |\ I]) = [\text{rref}(A)\ |\ B].\] Assume \(C\) is the matrix such that
\[C\cdot [A\ \vert\ I] = \text{rref}([A\ \vert\ I])= [\text{rref}(A)\ \vert\ B].\]
Finally, note that \[C\cdot [A\ \vert\ I] = [CA\ \vert\ CI] = [CA\ \vert\ C],\] and hence \(C=B\) and \(BA=\text{rref}(A)\). \(\Box\)
Example.
\[\text{rref}\left(\left[\begin{array}{rrr|rr} 2 & 3 & 1 & 1 & 0\\ 2 & 3 & -2 & 0 & 1 \end{array}\right]\right) = \left[\begin{array}{rrr|rr} 1 & 3/2 & 0 & 1/3 & 1/6\\ 0 & 0 & 1 & 1/3 & -1/3 \end{array}\right]\]
\[\left[\begin{array}{rrr} 1/3 & 1/6\\ 1/3 & -1/3 \end{array}\right]\left[\begin{array}{rrr} 2 & 3 & 1\\ 2 & 3 & -2 \end{array}\right] = \left[\begin{array}{rrr} 1 & 3/2 & 0\\ 0 & 0 & 1\end{array}\right]\]
Definition. Given a square matrix \(A\), a square matrix \(B\) such that \(AB=BA=I\) is called the inverse of \(A\). The inverse of \(A\) is denoted \(A^{-1}\). If a matrix \(A\) has an inverse, then we say that \(A\) is invertible.
Examples.
Theorem. A matrix \(A\) is invertible if and only if \(A\) is square and \(\text{rref}(A)=I\).
Proof. Suppose \(\text{rref}(A)=I\). There exists a matrix \(B\) so that \(BA=\text{rref}(A)\). From this we deduce that \(BA=I\). For each elementary matrix \(E\) there is an elementary matrix \(F\) such that \(FE=I\). Since \(B\) is a product of elementary matrices \[B= E_{k}\cdot E_{k-1}\cdots E_{1}\]
We take \(F_{i}\) such that \(F_{i}E_{i}=I\) for each \(i\), and set \[C = F_{1}\cdot F_{2}\cdots F_{k}\]
and we see that \(CB=I\). Finally, we have \[AB = CBAB =C I B = CB = I.\]
Now, suppose \(A\) is invertible. By definition \(A\) is square. If \(x\) is a vector such that \(Ax=0\), then \(A^{-1}Ax=A^{-1}0\). Thus, \(x=0\) is the only solution to \(Ax=0\). Hence, \(\{0\}=N(A) = N(\operatorname{rref}(A))\). This implies that each row of \(\operatorname{rref}(A)\) must have a pivot. Since it is square, every column of \(\operatorname{rref}(A)\) contains a pivot. This implies \(\operatorname{rref}(A)=I\). \(\Box\)
Example. Let \[A = \begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 0\\ 5 & 7 & 4\end{bmatrix}\]
Is \(A\) invertible? If it is, find \(A^{-1}\).
Note that \[\text{rref}(A)\neq I\] and hence \(A\) is not invertible.
Note that
\[\text{rref}\left(\left[\begin{array}{ccc|ccc} 2 & 3 & 4 & 1 & 0 & 0\\ 3 & 4 & 0 & 0 & 1 & 0\\ 5 & 7 & 4 & 0 & 0 & 1\end{array}\right]\right) = \left[\begin{array}{ccc|ccc} 1 & 0 &-16 & 0 & 7 & -4\\ 0 & 1 & 12 & 0 & -5 & 3\\ 0 & 0 & 0 & 1 & 1 & -1\end{array}\right]\]
Example. Let \[A = \begin{bmatrix} 0 & -1 & -2\\ 1 & 1 & 1\\ -1 & -1 & 0\end{bmatrix}\]
Is \(A\) invertible? If it is, find \(A^{-1}\).
Since \(\text{rref}(A)= I\) we see that \(A\) is invertible. Moreover, \[A^{-1} = \begin{bmatrix} 1 & 2 & 1\\ -1 & -2 & -2\\ 0 & 1 & 1\end{bmatrix}\]
Note that
\[\text{rref}\left(\left[\begin{array}{ccc|ccc} 0 & -1 & -2 & 1 & 0 & 0\\ 1 & 1 & 1 & 0 & 1 & 0\\ -1 & -1 & 0& 0 & 0 & 1\end{array}\right]\right) = \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 2 & 1\\ 0 & 1 & 0 & -1 & -2 & -2\\ 0 & 0 & 1 & 0 & 1 & 1\end{array}\right]\]