Milo Viviani
Chalmers and University of Gothenburg
Holy grail of 2D incompressible hydrodynamics:
Zonal jet and vortex structures on Jupiter
Copyright: NASA, Cassini Imaging Team
Let \(B\colon\mathbb{C}^{n\times n}\to\mathbb{C}^{n\times n}\)
isospectral flow
Analytic function \(f\) yields first integral
Casimir function
Hamiltonian case
Hamiltonian function
Note: Non-canonical Poisson structure (Lie-Poisson)
Apply \(\operatorname{curl}\)
geodesic equation on \(\operatorname{SDiff}(\mathbb S^2)\)
vorticity formulation
Note: \(\omega\) transported by \(v\)
Helmholtz decomposition \(\Rightarrow\) \(v = \nabla^\bot \psi\)
Coriolis force
Stream function
Casimirs: for any \(f:\mathbb R\to\mathbb R\)
Note: Casimirs strongly affect long-time behavior
\((C_0^\infty(\mathbb S^2),\{\cdot,\cdot\})\) a Poisson algebra
Quantization: projections \(P_N:C^\infty_0(\mathbb S^2) \to \mathfrak g_N\) such that
Lie algebras
* [J. Hoppe, PhD thesis, MIT Cambridge 1982]
expressed through spherical harmonics
[Bordemann, Hoppe, Schaller, Schlichenmaier, 1991]
[Hoppe & Yau, 1998]
banded matrices
Note: corresponds to
\(N^2\) spherical harmonics
\(O(N^2)\) operations
\(O(N^3)\) operations
Isospectral flow \(\Rightarrow\) discrete Casimirs
Aims: numerical integrator that is
What about symplectic Runge-Kutta methods?
...nevertheless, symplectic Runge-Kutta saves the day...
*[M. & Viviani, FoCM, 2019]
Given \(s\)-stage Butcher tableau \((a_{ij},b_i)\) for SRK
Theorem: method is isospectral and Lie-Poisson preserving on any reductive Lie algebra
Controversy in 2D turbulence:
Statistical mechanics suggests steady asymptotic minimizing entropy while preserving the Casimirs
High resolution numerical simulations suggest otherwise
[Robert & Sommeria, 1991]
[Dritschel, Qi, Marston, 2015]
Their numerical method use dissipation and does not preserve all Casimirs
\(\Rightarrow\) likely affect asymptotic behavior
[M. & Viviani, 2019 (under review)]
Fast-forward
Evolution of vorticity \(\omega\)
...compare with Jupiter