Robert McLachlan
Massey University
Olivier Verdier
Western Norway University
Why?
Phase space T∗Q
Simplest case T∗Rn≃R2n
Typical examples: celestial mechanics, molecular dynamics
Symplectic 2-form:
On R2n:
Hamiltonian vector fields fulfill (defining property)
Flow φt preserves the symplectic form:
Geometric interpretation: the "symplectic area" of 2D surfaces in phase space are preserved
This explains why symplectic integrators are superior!
non-symplectic
symplectic
Energy behaviour
Phase space (S2)n
Symplectic structure on S2 Ωw(u,v)=det(w,u,v)
Free rigid body w˙=w×I−1w
Heisenberg spin chain
(discrete Landau-Lifshitz) w˙i=wi×(wi−1+wi+1)
Fluid particle tracking on sphere w˙=ξ(t,w),ξ(t,⋅)∈Xμ(S2)
Point vortex dynamics on spheres
(Jupiter's great red spot)
Drawbacks: many auxiliary variables, complicated, large error constants
⇒ not symplectic
⇒ not symplectic
Candidates:
Main result
Classical
midpoint
Riemannian
midpoint
Classical midpoint method applied to XˉH
References:
Symplectic integrators for spin systems, Phys. Rev. E, 89:061301, 2014
A minimal-variable symplectic integrator on spheres, Math. Comp., 86, 2325-2344, 2016
Geometry of discrete-time spin systems, J. Nonlin. Sci., 26(5):1507-1523, 2016
*slides at slides.com/kmodin