Robert McLachlan
Massey University
Olivier Verdier
Western Norway University
Why?
Phase space \(T^*Q\)
Simplest case \(T^*\mathbb{R}^n\simeq \mathbb{R}^{2n}\)
Typical examples: celestial mechanics, molecular dynamics
Symplectic 2-form:
On \(\mathbb{R}^{2n}\):
Hamiltonian vector fields fulfill (defining property)
Flow \(\varphi_t\) preserves the symplectic form:
Geometric interpretation: the "symplectic area" of 2D surfaces in phase space are preserved
This explains why symplectic integrators are superior!
non-symplectic
symplectic
Energy behaviour
Phase space \((S^2)^n\)
Symplectic structure on \(S^2\) \[\Omega_w(u,v)=\mathrm{det}(w,u,v)\]
Free rigid body \[\dot w = w\times I^{-1}w \]
Heisenberg spin chain
(discrete Landau-Lifshitz) \[\dot w_i = w_i\times (w_{i-1}+w_{i+1}) \]
Fluid particle tracking on sphere \[\dot w = \xi(t,w), \quad \xi(t,\cdot)\in \mathfrak{X}_\mu(S^2) \]
Point vortex dynamics on spheres
(Jupiter's great red spot)
Drawbacks: many auxiliary variables, complicated, large error constants
\(\Rightarrow\) not symplectic
\(\Rightarrow\) not symplectic
Candidates:
Main result
Classical
midpoint
Riemannian
midpoint
Classical midpoint method applied to \(\bar X_H\)
References:
Symplectic integrators for spin systems, Phys. Rev. E, 89:061301, 2014
A minimal-variable symplectic integrator on spheres, Math. Comp., 86, 2325-2344, 2016
Geometry of discrete-time spin systems, J. Nonlin. Sci., 26(5):1507-1523, 2016
*slides at slides.com/kmodin