Invariant Riemannian metric on \(E\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
Invariant Riemannian metric on \(E\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot H \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
left co-sets \([g] = g\cdot G_{b_0} \)
Semi-invariant Riemannian metric on \(G\)
\(\Rightarrow\) \(\pi\) Riemannian submersion
polar cone
Monge problem, \(L^2\) version
Monge problem, \(L^2\) version
Riemannian metric
Induced metric
[Benamou & Brenier (2000), Otto (2001)]
Invariance: \(\eta\in\mathrm{Diff}_{\mu_0}(M)\)
Geodesic equation:
Easy to prove:
Polar cone \(K\) is isomorphic to strictly convex smooth functions via \(\phi \mapsto \nabla\phi\)
Hard to prove:
Polar cone \(K\) a section of principal bundle
Geodesic equation:
Easy to prove:
Polar cone \(K\) is isomorphic to strictly convex smooth functions via \(\phi \mapsto \nabla\phi\)
Hard to prove:
Polar cone \(K\) a section of principal bundle
Brenier's decomposition of transport maps
Geodesic curve:
In particular:
Geodesic curve:
In particular:
Geodesic curve:
In particular:
Trivial observation: \(\varphi_0(x) = A_0 x\), \(\varphi_1(x) = A_1 x\) linear diffeomorphisms \(\Rightarrow\) geodesic consists of linear diffeomorphisms
Consequence: \(GL(n)\) is totally geodesic subgroup of \(\operatorname{Diff}(\mathbb{R}^n)\)
Corresponding subspace of densities (statistical submanifold): multivariate Gaussians with zero mean
Monge-Ampere equation:
Factorization theorem:
Vertical gradient flow:
Vertical gradient flow:
Vertical gradient flow:
Horizontal gradient (heat) flow:
Relative entropy
(Kullback-Leibler)
Horizontal gradient (heat) flow:
Relative entropy
(Kullback-Leibler)
Horizontal gradient (heat) flow:
Lifted gradient flow on \(K\) for
Horizontal gradient (heat) flow:
Lifted gradient flow on \(K\) for
Hessian of \(F(P)\) strictly positive on \(K\) \(\Rightarrow\) unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on \(K\) for
Hessian of \(F(P)\) strictly positive on \(K\) \(\Rightarrow\) unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on \(K\) for
Hessian of \(F(P)\) strictly positive on \(K\) \(\Rightarrow\) unique limit!
Horizontal gradient (heat) flow:
Lifted gradient flow on \(K\) for
Hessian of \(F(P)\) strictly positive on \(K\) \(\Rightarrow\) unique limit!
Wasserstein
Fisher-Rao
Dependent on Riemannian structure of \(M\)
Independent of Riemannian structure of \(M \Rightarrow \mathrm{Diff}(M)\)-invariance
\(H_N(W)\) relative entropy functional
Functional \(F(Q) = H_N(Q^\top W_1 Q)\) on \(O(n)\)
Relative entropy
Wasserstein-Otto metric
\(\Rightarrow\) Riemannian gradient flow \(\dot\rho = -\nabla_{\overline{\mathcal G}}F(\rho)\)
Take \(F(\rho) = \int_M \log(\rho) \rho \Rightarrow \delta F = \log(\rho)+1\)
same potential, different Riemannian metrics:
IPM: \(L^2\) on velocity (\(H^{1}\) on stream function)
TODA: \(H^{-1}\) on velocity (\(L^2\) on stream function)
gradients flows on \(\mathrm{Diff}_\mu(S^2)\)
gravity
low density
(light particles)
high density
(heavy particles)