Michael Küffmeier (Marie Skłodowska-Curie global fellow)

Model constraints on the mass reservoirs of forming disks

Sigurd Jensen, Jaime Pineda, Paola Caselli (all MPE), Troels Haugbølle (NBI)

Let's go back in time to the year 2014

The classical picture

credit: M. Persson

star formation

planet formation

History of modeling disk formation

spherical core collapse:

rotation

magnetization (mass-to-flux ratio)

non-ideal MHD effects

dust evolution

turbulence

useful for parameter studies

\rho(r) = \frac{\rho_{\rm c} R_{\rm c}^2}{R_{\rm c}^2 + r^2}

Bonnor-Ebert sphere

or uniform density

\rho(r) = \rho_{0}

History of modeling disk formation

What about magnetic fields?

Help! Where is the disk?!

Santos-Lima et al. 2012

Hydro

ideal MHD

L_{\rm mag} = \int_{t_{\rm c}}^{t}\int^V r (\mathbf{J} \times \mathbf{B})_\phi \mathrm{d}V\mathrm{d}t

Magnetic braking catastrophe

Angular momentum is transported too efficiently away from the disk

History of modeling disk formation

What about magnetic fields?

Help! Where is the disk?!

Ohmic, Ambipolar, Hall 

Santos-Lima et al. 2012

Hydro

ideal MHD

non-ideal MHD

non-ideal MHD is not a single parameter (Wurster et al. 2018, Kuffmeier et al. 2020)

Achtung!

Comprehensive reviews:

Wurster & Li 2018 or Tsukamoto et al 2023 (PPVII chapter)

Streamers!

What about magnetic fields?

Help! Where is the disk?!

Ohmic, Ambipolar, Hall 

Turbulence

Santos-Lima et al. 2012

Hydro

ideal MHD

non-ideal MHD

turbulence + MHD

Other effect: dust

dust growth weakens magnetic braking => larger disks

Zhao et al. 2018, Marchand et al. 2020

dust-rich disks from collapse

"ash-fall" scenario

Tsukamoto et al. 2021

 Lebreuilly et al. 2020

dust accumulates

Is this the full picture?

Credit: ALMA (ESO/NAOJ/NRAO)

Ginski et al. 2021

Yen et al. 2019

Garufi et al. 2021

Pineda et al. 2020

50 au

BHB1 (Alves et al. 2020), GM Aur (Huang et al. 2021), IRS 63 (Segura-Cox in prep.), AB Aur (Grady et al. 1999 / Fukagawa et al. 2004), M512 Grant et al. 2021, Cacciapuoti in prep.), ...

Per-emb-50

Valdivia-Mena et al. 2022

Science question:

Can we get better (statistical) constraints on the relevance and importance of (late) infall from existing simulation data? 

Streamers: recall A. Gupta's talk

Model star formation in a Molecular Cloud

isothermal magnetohydrodynamical (MHD) with driven turbulence

adaptive mesh refinement (AMR) simulations with RAMSES

maximum resolution: 25 au (level of refinement: 15), root grid about 1600 au (level 9)

Total mass: 3000 solar masses

periodic boundary conditions

altogether 321 sink particles at last snapshot (2 Myr after the formation of the first star)

simulation setup including detailed description of sink recipe presented in Haugbølle+2018

Küffmeier, Jensen & Haugbølle '23

Late infall is common for stars*

 *unless they remain tiny

On average, stars with final masses of more than 1 solar mass accrete more than 50 % of their mass after 500 kyr

Note that some protostars still accrete after 1.2 Myr

Küffmeier, Jensen & Haugbølle '23

Origin of accreting gas

The accretion reservoir can extend beyond the core

(see also Smith+ 2011, Kuznetsova et al. 2020, Pelkonen+ 2021)

Two phase process:

Initial collapse followed by varying amount of post-collapse infall

Results:

Possibility of replenishing and refreshing the mass and chemical budget

Küffmeier, Jensen & Haugbølle '23

YSOs can appear younger than they really are

How old is the protostar?

Küffmeier, Jensen & Haugbølle '23

A poor analogy to a conference

Session start

Coffee break!

Streamers & shadows: signs of infall

Formation of misaligned configuration (Thursday morning in S13d)

synthetic image

Küffmeier, Dullemond, Reissl & Goicovic 2021

Ginski et al. 2021 (see also Labdon et al. 2023)

300 au

in agreement with Bate 2018

Summary

Pineda ... Küffmeier et al. 'Protostars and Planets VII'

.

 

 

 

.

Segura-Cox et al. in prep.

Star & disk can be replenished by infall of initially unbound material

YSOs can be rejuvenated

Zoom-in on embedded protostars

Küffmeier, Calcutt & Kristensen 2019

bridge structure similar to IRAS 16293--2422 (e.g. Sadavoy+ 2018, van der Wiel+ 2019, Maureira+ 2020)

Küffmeier, Reißl et al. 2020

~1500 AU

Küffmeier et al. 2018

Angular momentum budget

  • Large scatter of ang. mom.
  • Increasing specific angular momentum for increasing final stellar mass

Specific angular momentum computed from all accreting tracer particles at the first snapshot after star formation

  • subtle correlation with mass (inherited by disks??)

"We find marginal relationships between disk sizes and M*." (Long+ 2022)

Küffmeier, Jensen & Haugbølle '23

magnetohydrodynamics

\frac{\partial \mathbf{B}}{\partial t} = \nabla\times (\mathbf{v}\times\mathbf{B})

ideal MHD

\color{red}-\nabla\times[\eta_{\rm O} (\nabla \times \mathbf{B})]
\color{purple}-\nabla\times \{\eta_{\rm H} [(\nabla \times \mathbf{B}) \times \mathbf{B}/B] \}
\color{blue}-\nabla\times \{\eta_{\rm AD} \mathbf{B}/B \times [(\nabla \times \mathbf{B}) \times \mathbf{B}/B] \}

Ohmic dissipation

Hall

ambipolar diffusion

Non-ideal

Effect of ionization on disk size

increasing ionization rate

enhanced magnetic braking

smaller disks

see also Wurster et al. 2018

Küffmeier, Zhao & Caselli 2020