Michael Küffmeier (Marie Skłodowska-Curie global fellow)
Sigurd Jensen, Jaime Pineda, Teresa Valdivia (all MPE), Troels Haugbølle (NBI)
Credit: ALMA (ESO/NAOJ/NRAO)
Credit:
DSHARP team
10 au
50 au
Credit: NASA/ESA Hubble space telescope &
ALMA (ESO/NAOJ/NRAO)
50 au
Greene 2001
star formation
planet formation
spherical core collapse:
rotation
magnetization (mass-to-flux ratio)
non-ideal MHD effects
dust evolution
turbulence
useful for parameter studies
Bonnor-Ebert sphere
or uniform density
Tobin+ 2019
Are disks already born small in some regions?
What is the effect of local ionization rates?
Cosmic-ray ionization rate (or even Al-26)?
What about magnetic fields?
Help! Where is the disk?!
Ohmic, Ambipolar, Hall
Turbulence
Santos-Lima et al. 2012
Hydro
ideal MHD
non-ideal MHD
turbulence + MHD
Other effect: dust
dust growth weakens magnetic braking => larger disks
Zhao et al. 2018, Marchand et al. 2020
dust-rich disks from collapse
"ash-fall" scenario
Tsukamoto et al. 2021
Lebreuilly et al. 2020
dust accumulates
Credit: ALMA (ESO/NAOJ/NRAO)
Ginski et al. 2021
Yen et al. 2019
Garufi et al. 2021
Pineda et al. 2020
50 au
see also:
BHB1 (Alves et al. 2020), GM Aur (Huang et al. 2021), IRS 63 (Segura-Cox in prep.), AB Aur (Grady et al. 1999 / Fukagawa et al. 2004), ...
Küffmeier et al. 2017
Küffmeier, Calcutt & Kristensen 2019
bridge structure similar to IRAS 16293--2422 (e.g. Sadavoy+ 2018, van der Wiel+ 2019, Maureira+ 2020)
Küffmeier, Reißl et al. 2020
~1500 AU
Küffmeier et al. 2018
Küffmeier, Reißl et al. 2020
Magnetic field in bridge
Synthetic observation with POLARIS
Field strength in bridge:
about 1 to 2 mG
Polarization fraction in bridge:
a few %
Küffmeier, Reißl et al. 2020
Emitted radiation
Polarization fraction in bridge:
a few %
Polarization fraction in bridge:
up to 20 %
IRAS 16293--2422
Sadavoy et al. 2018
=> IRAS 16293-2422 is strongly magnetized
Emitted radiation
1.3 mm: good tracer of magnetic field
53 micron: poor tracer of magnetic field
Küffmeier, Reißl et al. 2020
Küffmeier, Reißl et al. 2020
Self-scattering
Dichroic extinction
< 200 micron: dichroic extinction and self-scattering; no trace of B
> 200 micron: thermal emission; linear polarization traces B
Küffmeier, Haugbølle & Nordlund 2017
Küffmeier, Haugbølle & Nordlund 2017
Observational indication: luminosity bursts
Küffmeier et al. 2017 / 2022 in prep.
Gas from beyond the prestellar core can fall onto the star-disk system
For solar mass stars ~50 % of final mass from beyond prestellar core! (Pelkonen et al. 2021)
Can disks be rejuvenated?
Küffmeier et al. 2022 in prep
Possibility of replenishing and refreshing the mass and chemical budget
Formation of misaligned configuration
Observable as shadows in outer disk
Ginski et al. 2021
Küffmeier, Dullemond et al. 2021
see also Bate 2018
AREPO, pure hydrodynamical
isothermal gas
vary infalling angle
vary rotation (prograde, retrograde)
Küffmeier, Dullemond, Reißl, Goicovic et al. 2021
Küffmeier et al. 2021
Retrograde infall causes:
see also Vorobyov+ 2016
Küffmeier et al. 2021
Küffmeier et al. 2021
Pineda ... Küffmeier et al. 'Protostars and Planets VII'
.
.
Segura-Cox et al. in prep.
Star and planet formation are two sides of the same medal
The disk is not a static entity, but rather a buffer zone
*we haven't even touched (proto-)stellar multiplicity
Session start
My talk
Coffee break!