Topological and trivial gaps in graphene-based van der Waals heterostructures under strain and disorder

László Oroszlány

Department of Physics of Complex Systems, Eötvös Loránd University

and MTA-BME Lendület Topology and Correlation Research Group

 

Duncan and Kekulé

Charlie, Gene  vs. August

Strained relationship

Kane, Mele, Phys. Rev. Lett. 95, 226801 (2005)

Act I

heterostructures, strain, gaps

Graphene is ...

... a good template!

A. K. Geim, I. V. Grigorieva Nature  499, 419 (2013)

BiTeX: gigant spin-orbit coupling

Ishizaka et al. Nature Materials 10, 521 (2011)

Fülöp et al. 2D Mater. 5, 031013 (2018)

Bulk

exfoliatin of a single trilayer

BiTeX/graphene heterostructures

Z. Tajkov el al. Nanoscale 11, 12704 (2019)

\(K \leftarrow \Gamma \rightarrow M \)

Pressure→I, inplane strain →TI !?!

Z. Tajkov el al. Appl. Sci.  9, 4330 (2019)

BiTeBr

BiTeCl

BiTel

Effective model

t_2
t_3
t_1
im_z\sigma_z

Tajkov el al. Phys. Rev. B 101, 235146 (2020)

take away message:

  • Kekulé gap is killed by strain
  • KM gap is insensitive to strain
\begin{array}{c} \hat{H}=v\left( \hat{\boldsymbol{p}}\cdot\boldsymbol{\sigma}\otimes\tau_{z} -\boldsymbol{A}\cdot\boldsymbol{\sigma}\otimes\tau_{0} \right)\\ +\Delta_{\text{Kek}}\sigma_0\otimes\tau_x\\ +\Delta_{\text{KM}}\sigma_z\otimes\tau_0 \end{array}

low energy Dirac picture

=\mathrm{e}^{-\beta\left(l/l_0-1\right)}

Act II

A colorfull mess

Adatoms

  • adatoms distort the lattice, alter hopping around a hexagon 

 

  • adatoms introduce Kane-Mele type spin-orbit interaction on a plaquette

Promising candidates: Tl and dimers

Phys. Rev. X 1, 021001 (2011)

Phys. Rev. Lett. 109, 266801 (2012)

E[eV]

E[eV]

Hidden order of adatoms via RKKY

V.V.Cheianov et al. Solid State Commun. 149, 1499 (2009)

\hat{H}=v\hat{\boldsymbol{p}}\cdot\boldsymbol{\sigma}\otimes\tau_{z}
V^{\mathrm{RKKY}}_{ij}=\int_{-\infty}^{\infty}\text{d}\omega\text{Tr}\left[\hat{V}_{i}\hat{G}(\omega)\hat{V}_{j}\hat{G}(-\omega)\right]
\hat{V}_{i}=\delta(\boldsymbol{r}-\boldsymbol{r}_i)\left( \Delta_{\text{Kek}}\sigma_{0}\otimes\boldsymbol{u}_{i}\cdot\boldsymbol{\tau}+ \Delta_{\text{KM}}\sigma_{z}\otimes\tau_{0} \right )
V^{\mathrm{RKKY}}_{ij}=-\frac{\Delta_{\text{Kek}}^{2}\boldsymbol{u}_{i}\cdot\boldsymbol{u}_{j}+\Delta_{\text{KM}}^{2}}{8\pi r_{ij}^{3}v}
\boldsymbol{u}_{i}=\left( \begin{array}{c} \cos\left(\frac{2\pi}{3}\nu_{i}\right) \\ \sin\left(\frac{2\pi}{3}\nu_{i}\right) \end{array}\right),\,\nu_i\in[-1,0,1]

Large adatom \( \Rightarrow \) strong SOI

"Ferro"

"Para"

SOI does not interfere with ordering!

3 state Potts model

m =\frac{\sqrt{3}}{3}|t' -t|

"Ferro"

"Para"

T

\(\sigma_{SH}\)

\(\sigma_{SH}\)

E_{gap}[t]
E_{gap}[t]

The Team

Zoltán Tajkov

Dániel Nagy

János Koltai

József Cserti

Balázs Dóra

Thanks!

Z. Tajkov el al. Nanoscale 11, 12704 (2019)

Z. Tajkov el al. Appl. Sci.  9, 4330 (2019)

Tajkov el al. Phys. Rev. B 101, 235146 (2020)