László Oroszlány ELTE-KRFT
Berezinskii, Sov. Phys. JETP, 32 493 (1971)
Kosterlitz, Thouless, J. Phys. C, 6 1181 (1973)
2D XY model has a phase transition despite the
Mermin-Wagner theorem!
Phys. Rev. Lett. 87, 037203 (2001)
Chern
number
Nuclear Physics 31, 556 (1962)
two bands
also parametrizes the eigenstates on the Bloch spehre
W. P. Su, J. R. Schrieffer, and A. J. Heeger Phys. Rev. Lett. 42, 1698 (1979)
Winding
number
chiral symmetry
Finite bulk winding number edge states
BZ
"sitting in the origin staring towards infinity"
v. Klitzing, Dorda, Pepper Phys. Rev. Lett. 45, 494 (1980)
Haldane Phys. Rev. Lett. 61, 2015 (1988)
Qi, Wu, Zhang Phys. Rev. B 74, 085308 (2006)
Hasan, Kane Rev. Mod. Phys. 82 3045 (2010)
TaAs surface, Nat. Comm. 6, 7373 (2015)
chiral symmetry
Nodal knots
Phys. Rev. B 96, 201305(R) (2017)
Nodal links
Phys. Rev. B 96, 081114(R) (2017)
A good summary: Adv. Phys. X 3, 1414631 (2018)
PbTaSe
ZrSiS
Onsager quantization condition:
Phil. Mag. 43, 1006 (1952)
Berry's phase:
Proc. R. Soc. Lond. A 392, 45 (1984)
Two band models
Chiral symmetry quantizes Berry's phase!
DOS oscillatory in 1/B
nice pedagogical summary for 2D
JN Fuchs https://arxiv.org/pdf/1306.0380.pdf
No Berry's phase!
There is "nothing to wind" !
only trivial oscillations!
non trivial Berry's phase!
"it always winds"
n=0 is special ...
Nature 438, 201 (2005)
Science Advances 2, e1601742 (2016)
Nature Physics 14, 178 (2018)
Frontiers of Physics 13, 137201 (2017)
" A transition like this, which is highly sensitive and depends only on a 10° or less change in the magnetic field angle, opens the door to creating new types of devices based on subtle details of the Fermi surface."
trivial oscillations
Magnetic field
perpendicular to the loop
semiclassics:
topological
trivial
in plane magnetic field
inspiration: Montambaux et al. Eur. Phys. J. B 72 509 (2009)
Balázs Dóra
József Cserti
Alberto Cortijo
details at:
Phys. Rev. B 97, 205107 (2018)
https://arxiv.org/abs/1801.04721
https://github.com/oroszl/nodalloopsemimetal
2017-1.2.1-NKP-2017-00001
https://arxiv.org/abs/1509.02295
A really good implementation