Department of Physics of Complex Systems
Eötvös Loránd University, Budapest
many physical qubit = few logical qubit
degenerate subspace\(\Leftrightarrow\) topology of real space
A. Kitaev, Annals of Physics 321 2 (2006)
|
A. Kitaev Phys.-Usp. 44 131 (2001) R. Lutchyn et al. Phys. Rev. Lett. 105, 077001 (2010) Y.Oreg et al. Phys. Rev. Lett. 105, 177002 (2010) V. Murik et al. Science 336, 1003 (2012) |
topological protection
due to material properties
Majorana qubit
Kitaev "honeycomb" and "toric code"
Jordan-Wigner
Majorana-fermion
"standard" fermion
TSC
p-wave
\(\hat{\gamma}_0\), \(\hat{\gamma}_{2L+1}\) absent!!
1D "transvers filed" Ising model
Kitaev model
\(f=0\rightarrow\) parafermions at the edg, \(\hat{\alpha}_1\) & \(\hat{\alpha}_{2L}\), absent form the Hamiltonian!
The missing two parafermions encode an N-fold degenerate subspace!
N=3 Clock model
Jordan-Wigner
Parafermion
A.Hutter, D. Loss Phys. Rev. B 93, 125105 (2016)
F. Zhang, C. L. Kane, Phys. Rev. Lett., 113, 036401 (2014).
C. P. Orth et al. Phys. Rev. B, 91, 081406 (2015).
J. Alicea, P. Fendley Annu. Rev. Condens. Matter Phys. 7,119 (2016.)
goal: microscopic model + DMRG
bosonised models
L
R
small \(B_y\) on the left for better visibility
gap remains finite !
\(V_L=1.7,\Delta_R=0.7\)
\(Length=12,\Delta_R=0.7\)
\(V_L\)
\(E-E_{GS}\)
4x degenerate!
gap !
no gap !
\( \langle GS_p | n_i | GS_q \rangle \approx \delta_{pq} \)
Raphael L. R. C. Teixeira, Luis G. G. V. Dias da Silva Phys. Rev. Research 3, 033014 (2021)
Osváth Botond, ELTE
Barcza Gergely, Wigner