Kanso Bio-inspired Motion Lab, USC
April 23, 2022
SoCal Fluids
5μm
Daghlian (2006)
K.Y. Wan (2018)
10μm
Quadflagellate
Wan (2019)
30μm
Hamel, et al. (2010)
Paramecium
30μm
Squid Light Organ
Nawroth, Guo, et al. (2017)
Lechtreck (2000)
Mouse Airway
10μm
Nawroth, et al. (unpublished)
To obtain principled understanding of cilia requires studying them across many length scales
1 mm\(^2\) of tissue can have a million cilia, and each driven by thousands of motor protein complexes!
Different abstraction levels are both necessary and desirable to truly understand cilia
Cilia Coordination
Guo, Man, et al., R. S. Interface (2020)
Man, Kanso, PRL (2020)
Kanale, Ling, et al., In preparation (2022)
Cilia Oscillation
Ling, Guo, Kanso, R. S. Interface (2018)
Man, Ling, Kanso, Phil. Trans. B (2020)
Ling, Kanso, In preparation (2022)
Ciliary Function
Guo, Ding, et al., JFM,PRE… (2014-2017)
Nawroth, Guo et al., PNAS (2017)
Nawroth, et al., Phil. Trans. B (2020)
Nawroth, Ling, et al., Submitted (2022)
1 mm\(^2\) of tissue can have a million cilia, and each driven by thousands of motor protein complexes!
Different abstraction levels are both necessary and desirable to truly understand cilia
Cilia Coordination
Guo, Man, et al., R. S. Interface (2020)
Man, Kanso, PRL (2020)
Kanale, Ling, et al., In preparation (2022)
Cilia Oscillation
Ling, Guo, Kanso, R. S. Interface (2018)
Man, Ling, Kanso, Phil. Trans. B (2020)
Ling, Kanso, In preparation (2022)
Ciliary Function
Guo, Ding, et al., JFM,PRE… (2014-2017)
Nawroth, Guo et al., PNAS (2017)
Nawroth, et al., Phil. Trans. B (2020)
Nawroth, Ling, et al., Submitted (2022)
Postulate: exact driving mechanism of cilia matter little when studying cilia coordination
e.g., symmetric cilia beats reproduced by follower force driven filament (Man 2020)
Condense to two non-dimensional ratios:
\(F=\|\bm{f}\|/(B/L^3)\) \(\rightarrow\) activity level
\(\gamma=\ln(L/h)/\ln(L/a)\) \(\rightarrow\) coupling strength
with an emergent time scale \(t_o=\zeta L^4/B\)
Man, Kanso, PRL (2020)
\(a\)
\(h\)
\(L\)
\(\bm{f}\)
Postulate: exact driving mechanism of cilia matter little when studying cilia coordination
e.g., symmetric cilia beats reproduced by follower force driven filament (Man 2020)
Condense to two non-dimensional ratios:
\(F=\|\bm{f}\|/(B/L^3)\) \(\rightarrow\) activity level
\(\gamma=\ln(L/h)/\ln(L/a)\) \(\rightarrow\) coupling strength
with an emergent time scale \(t_o=\zeta L^4/B\)
reveals multi-synchrony and bistability for a pair of hydrodynamically coupled cilia
initially in-phase
initially anti-phase
Man, Kanso, PRL (2020)
in-phase
anti-phase
Postulate: exact driving mechanism of cilia matter little when studying cilia coordination
e.g., symmetric cilia beats reproduced by follower force driven filament (Man 2020)
Condense to two non-dimensional ratios:
\(F=\|\bm{f}\|/(B/L^3)\) \(\rightarrow\) activity level
\(\gamma=\ln(L/h)/\ln(L/a)\) \(\rightarrow\) coupling strength
with an emergent time scale \(t_o=\zeta L^4/B\)
reveals multi-synchrony and bistability for a pair of hydrodynamically coupled cilia
initially in-phase
initially anti-phase
Man, Kanso, PRL (2020)
in-phase
anti-phase
Man, Kanso, PRL (2020)
Kawamura, Tsubaki, PRE (2018)
in-phase
anti-phase
non-trivial
pitchfork bifurcations
saddle-node bifurcations
(weak hydrodynamic coupling)
Man, Kanso, PRL (2020)
Kawamura, Tsubaki, PRE (2018)
in-phase
anti-phase
non-trivial
pitchfork bifurcations \(\rightarrow\)
saddle-node bifurcations \(\rightarrow\)
weak hydrodynamic coupling
How much can phased oscillator theory help us in understanding synchronization of many, many cilia?
\(\theta_i\)
⤸
Effective strokes / rotor tilt
\(\rightarrow\) first-harmonic forcing
Planar beats / rotor eccentricity
\(\rightarrow\) second harmonic forcing
Planar circular rotor with first and second harmonic forcing
matches far-field flow
do not produce net flow without hydrodynamic interactions
\(\theta_i\)
⤸
Uchida, Golestanian, PRL (2010)
Osterman, Vilfan, PNAS (2011)
Brumley, et al., eLife (2014)
Kanale, Ling, Fuerthauer, et al., (2022)
\(\theta_i\)
⤸
Kanale, Ling, Fuerthauer, Kanso, (2022)
Spherical cow of patches:
Kanale, Ling, Fuerthauer, Kanso, (2022)
Kanale, Ling, Fuerthauer, Kanso, (2022)
Kanale, Ling, Fuerthauer, Kanso, (2022)
Kanale, Ling, Fuerthauer, Kanso, (2022)
Kanale, Ling, Fuerthauer, Kanso, (2022)
Linear stability analysis on isotropic initial conditions produces excellent predictions!
Kanale, Ling, Fuerthauer, Kanso, (2022)
Scalar Kuramoto order parameter cannot distinguish metachronally ordered states:
indistinguishable wave states
Kanale, Ling, Fuerthauer, Kanso, (2022)
Scalar Kuramoto order parameter cannot distinguish metachronally ordered states:
indistinguishable wave states
Kanale, Ling, Fuerthauer, Kanso, (2022)
⤸
⤸
⤻
⤻
Nawroth, Ling, et al. (unpublished)
USC / Helmholtz Pioneer Campus
University of Michigan
Flatiron / TU Wien
USC / Peking University
USC / Medtronics