arXiv:1302.5843v3 [cond-mat.stat-mech]
Ising formulations of many NP problems
arXiv:1302.5843v3 [cond-mat.stat-mech]
Ising formulations of many NP problems
Ising model?
Quantum Version?
How is related to TSP?
Ising model?
Quantum Version?
How is related to TSP?
Statistical Mechanics
Partition Functions
Analitycal Mechanics
Hamiltonians
Angular Momentum
Energy
Canonical Coordinates
Spin
Magnetic Momentum
Quantum Mechanics
Electromagnetism
Thermodinamics
Statistical Mechanics
Partition Functions
Analitycal Mechanics
Hamiltonians
Angular Momentum
Energy
Canonical Coordinates
Spin
Magnetic Momentum
Quantum Mechanics
Electromagnetism
Thermodinamics
Ludmila Augusta Soares Botelho
Is there is a very simple model to describe ferromagnetism?
Is there a phase transition in the magnetism of a linear sequence of little magnetic moments where only neighbors are energetically coupled?
Wilhelm Lenz
{
{
{
z
Wilhelm Lenz
Ernst Ising
?
!
Wilhelm Lenz
Ernst Ising
?
Model
It does not have phase transition!
... what about some quantum mechanics?
... more dimensions?
( the best time)
Why do we care about Statistical Mechanics?
( the best time)
Why do we care about Statistical Mechanics?
It relates the
microscopic
with the
MACROSCOPIC
Why do we care about Statistical Mechanics?
It relates the
microscope
with the
MACROSCOPE
(More precisely, Statistical Mechanics)
S
R
~
~
~
Pj=Ze−βEj
Z=σ∑e−βEσ
ustandssumme
(More precisely, Statistical Mechanics)
S
Pj=Ze−βEj
Z=σ∑e−βEσ
ustandssumme
Connection with Thermodynamics
R
quiz: why the "-" signal?
H=−Ji∑sisi+1−hi∑Nsi
{
interaction
{
external field
Z=?
z
h
⋯
⋯
{
Free Energy
Magnetization
H=−Ji=j∑sisj−hi∑Nsi
{
interaction
{
external field
Z=?
z
h
⋯
⋯
{
Free Energy
Entropy
Magnetization
Z={si}∑eβJ∑sisi+1+βh∑si
Z={si}∑eβJ∑sisi+1
e+βh∑si
No external field! h=0
Boundary Conditions: Open
{s1,s2,s3,...,sN}→{s1,μ1,μ2,...,μN−1}
μ1=s1s2,μ2=s2s3,...,μN−1=sN−1sN
"coordinate transformation"
si=±1
μi=±1
={s1,...,μN}∑eβJ∑μi
=2i=1∏N−1μi=±1∑eβJμi
Z=2(2coshβJ)N−1
...
Boundary Conditions: Periodic
sN+1=s1
si=±1
Z={si}∑eβJ∑sisi+1+βh∑si
T(si,si+1)=exp[βJ sisi+1+2βh (si+si+1)]
={si}∑i=1∏NT(si,si+1)
Z=tr(T)N
transfer matrix
tr(A)=i∑Ai,i
tr(A)2=i∑Ai,jAj,i
tr(A)3=i∑Ai,jAj,kAk,i
tr(AN)={si}∑i=1∏NA(si,si+1)
...
U−1TU=D
U−1=U†
Z=tr(U−1DU)N
=tr(D)N
=λ+N+λ−N
λ±=eβJcoshβh±e−2βJ+e2βJsinhβh
Z=λ+N[1+(λ+λ−)N]
(N→∞)
=[eβJcoshβh+e−2βJ+e2βJsinh2βh ]
Z=λ+N =λmaxN
F=−TlnZ
h→0
M=−∂h∂F
M→0
M=Z1{si}∑MeβE
M=n=1∑Nsn
P(all up)=2(coshβJN−1)eβJ(N−1)
E(all up)=−Ji=j∑sisj=−J(N−1)
P(some state)=Ze−βEof that state
(β=kBT1)
⟨fx⟩=x∑fxP(x)
⟨snsn+r⟩=Z1{si}∑snsn+re−βH
⟨snsn+r⟩=tanhr(βJ)
⟨snsn+r⟩=tanhr(J/T)
=exp{rln[tanh(J/T)]}
=e−ξr
ξ=−lntanh(J/T)1
si=±1,0
si
?
transfer matrix
si=±1,0
transfer matrix
?
?
si=±1,0
si
?
2D
transfer matrix
Phase transition depends on dimensionality
lower critical dimension
(h=0)
?
- It does has phase transition!
- Kramers & Wannier
- Ising Spin Glass
H=−i,j∑Ji,jsisj−hi∑Nsi
H=−Ji∑sisi+1−hi∑Nsi
Open problem!
H=−Ji∑sisi+1−hi∑Nsi
H=−Ji∑σizσi+1z
Pauli Matrices
Reduces to classical version
H=−Ji∑σizσi+1z−hi∑Nσix
E=−Ji∑σiσi+1
transverse field
energy levels σi=±1
diagonal!
-Ferromagnetic vs Paramagnet
σiα=I⊗i−1⊗σαI⊗N−i
H=−Ji∑σizσi+1z−hi∑Nσix
H=−21i∑N[Jxσixσi+1x+Jyσiyσi+1y+ Jzσizσi+1z−hσiz]
H=−21i∑N[Jxσixσi+1x+Jyσiyσi+1y+ −hσiz]
Jx=(21+γ)
Jy=(21−γ)
- Tensor Networks
Quantum Many-Body Problems
magnet