arXiv:1302.5843v3 [cond-mat.stat-mech]
Ising formulations of many NP problems
arXiv:1302.5843v3 [cond-mat.stat-mech]
Ising formulations of many NP problems
Ising model?
Quantum Version?
How is related to TSP?
Ising model?
Quantum Version?
How is related to TSP?
Statistical Mechanics
Partition Functions
Analitycal Mechanics
Hamiltonians
Angular Momentum
Energy
Canonical Coordinates
Spin
Magnetic Momentum
Quantum Mechanics
Electromagnetism
Thermodinamics
Statistical Mechanics
Partition Functions
Analitycal Mechanics
Hamiltonians
Angular Momentum
Energy
Canonical Coordinates
Spin
Magnetic Momentum
Quantum Mechanics
Electromagnetism
Thermodinamics
Ludmila Augusta Soares Botelho
Is there is a very simple model to describe ferromagnetism?
Is there a phase transition in the magnetism of a linear sequence of little magnetic moments where only neighbors are energetically coupled?
Wilhelm Lenz
{
{
{
$$z$$
Wilhelm Lenz
Ernst Ising
?
!
Wilhelm Lenz
Ernst Ising
?
Model
It does not have phase transition!
... what about some quantum mechanics?
... more dimensions?
( the best time)
Why do we care about Statistical Mechanics?
( the best time)
Why do we care about Statistical Mechanics?
It relates the
microscopic
with the
MACROSCOPIC
Why do we care about Statistical Mechanics?
It relates the
microscope
with the
MACROSCOPE
(More precisely, Statistical Mechanics)
S
R
~
~
~
$$P_j = \frac{e^{-\beta E_j}}{Z} $$
$$Z = \sum_{\sigma}e^{-\beta E_\sigma}$$
ustandssumme
(More precisely, Statistical Mechanics)
S
$$P_j = \frac{e^{-\beta E_j}}{Z} $$
$$Z = \sum_{\sigma}e^{-\beta E_\sigma}$$
ustandssumme
Connection with Thermodynamics
R
quiz: why the "-" signal?
$$\mathcal{H} = -J \sum_{i} s_i s_{i+1} - h\sum_i^N s_i$$
{
interaction
{
external field
$$Z=?$$
$$z$$
$$h$$
$$\cdots$$
$$\cdots$$
{
Free Energy
Magnetization
$$\mathcal{H} = -J \sum_{i\neq j} s_i s_j - h\sum_i^N s_i$$
{
interaction
{
external field
$$Z=?$$
$$z$$
$$h$$
$$\cdots$$
$$\cdots$$
{
Free Energy
Entropy
Magnetization
$$Z=\sum_{\{s_i\}} e^{\beta J \sum s_i s_{i+1} + \beta h \sum s_i }$$
$$Z=\sum_{\{s_i\}} e^{\beta J \sum s_i s_{i+1}}$$
$$e^{+ \beta h \sum s_i }$$
No external field! $$h=0$$
Boundary Conditions: Open
$$\{s_1,s_2,s_3,...,s_N\}\to \{s_1,\mu_1,\mu_2,...,\mu_{N-1}\}$$
$$\mu_1 = s_1 s_2,\; \mu_2 = s_2s_3 ,...,\; \mu_{N-1}=s_{N-1}s_N$$
"coordinate transformation"
$$s_i=\pm 1$$
$$\mu_i=\pm 1$$
$$=\sum_{\{s1,...,\mu_N\}} e^{\beta J \sum \mu_i}$$
$$=2\prod_{i=1}^{N-1}\sum_{\mu_i=\pm 1} e^{\beta J \mu_i}$$
$$Z=2(2\cosh{\beta J})^{N-1}$$
...
Boundary Conditions: Periodic
$$s_{N+1}=s_1$$
$$s_i=\pm 1$$
$$Z=\sum_{\{s_i\}} e^{\beta J \sum s_i s_{i+1} + \beta h \sum s_i }$$
$$T(s_i,s_{i+1})=\exp\left[\beta J s_i s_{i+1} + \frac{\beta h}{2} (s_i+s_{i+1})\right] $$
$$=\sum_{\{s_i\}} \prod_{i=1}^N T(s_i,s_{i+1})$$
$$Z=\mathrm{tr}(T)^N$$
transfer matrix
$$\mathrm{tr}(A)=\sum_i A_{i,i}$$
$$\mathrm{tr}(A)^2=\sum_i A_{i,j} A_{j,i}$$
$$\mathrm{tr}(A)^3=\sum_i A_{i,j} A_{j,k} A_{k,i}$$
$$\mathrm{tr}(A^N)=\sum_{\{s_i\}} \prod_{i=1}^N A(s_i,s_{i+1})$$
...
$$U^{-1}TU=D$$
$$U^{-1}=U ^\dagger$$
$$Z=\mathrm{tr}(U^{-1}DU)^N$$
$$=\mathrm{tr}(D)^N$$
$$=\lambda_+^N + \lambda_-^N $$
$$\lambda_\pm = e^{\beta J}\cosh{\beta h} \pm \sqrt{e^{-2\beta J}+ e^{2\beta J} \sinh{\beta h}}$$
$$Z=\lambda_+^N \left[1+\left(\frac{\lambda_-}{\lambda_+}\right)^N \right]$$
$$(N \rightarrow \infty)$$
$$=\left[e^{\beta J}\cosh{\beta h} + \sqrt{e^{-2\beta J}+e^{2 \beta J}\sinh ^2}{\beta h} \right]$$
$$Z=\lambda_+^N = \lambda_{\text{max}}^N$$
$$F = -T\ln{Z}$$
$$h \rightarrow 0$$
$$M = -\frac{\partial F}{\partial h}$$
$$M \rightarrow 0$$
$$M = \frac{1}{Z}\sum_{\{s_i \}}\mathcal{M}e^{\beta E}$$
$$\mathcal{M} = \sum_{n=1}^Ns_n$$
$$P(\text{all up}) = \frac{e^{\beta J(N-1)}}{2(\cosh{\beta J}^{N-1} )}$$
$$ E(\text{all up}) = -J\sum_{i\neq j} s_i s_j =-J (N-1)$$
$$P(\text{some state}) = \frac{e^{-\beta E_{\text{of that state}}}}{Z}$$
$$\left(\beta = \frac{1}{k_B T}\right)$$
$$\langle f_x \rangle = \sum_x f_x P(x)$$
$$\langle s_n s_{n+r}\rangle =\frac{1}{Z} \sum_{\{s_i\}} s_n s_{n+r} e^{-\beta \mathcal{H}}$$
$$\langle s_n s_{n+r}\rangle =\tanh^r(\beta J)$$
$$\langle s_n s_{n+r}\rangle =\tanh^r(J/T)$$
$$=\exp\{r \ln [\tanh(J/T)]\}$$
$$=e^{-\frac{r}{\xi}}$$
$$\xi=-\frac{1}{\ln \tanh{(J/T)}}$$
$$s_i = \pm 1, 0$$
$$s_i$$
?
transfer matrix
$$s_i = \pm 1, 0$$
transfer matrix
?
?
$$s_i = \pm 1, 0$$
$$s_i$$
?
2D
transfer matrix
Phase transition depends on dimensionality
lower critical dimension
(\(h= 0\))
?
- It does has phase transition!
- Kramers & Wannier
- Ising Spin Glass
$$\mathcal{H} = - \sum_{i, j} J_{i,j} s_i s_{j} - h\sum_i^N s_i$$
$$\mathcal{H} = -J \sum_{i} s_i s_{i+1} - h\sum_i^N s_i$$
Open problem!
$$\mathcal{H} = -J \sum_{i} s_i s_{i+1} - h\sum_i^N s_i$$
$$\mathcal{H} = -J \sum_{i} \sigma_i^z \sigma_{i+1}^z $$
Pauli Matrices
Reduces to classical version
$$\mathcal{H} = -J \sum_{i} \sigma_i^z \sigma_{i+1}^z - h\sum_i^N \sigma_i^x$$
$$E = -J \sum_{i} \sigma_i \sigma_{i+1} $$
transverse field
energy levels \( \sigma_i =\pm 1 \)
diagonal!
-Ferromagnetic vs Paramagnet
$$ \sigma_i^\alpha = I^{\otimes i-1} \otimes \sigma^\alpha I^{\otimes N-i} $$
$$\mathcal{H} = -J \sum_{i} \sigma_i^z \sigma_{i+1}^z - h\sum_i^N \sigma_i^x$$
$$\mathcal{H} = - \frac{1}{2} \sum_{i}^N \left[ J_x \sigma_i^x \sigma_{i+1}^x +J_y \sigma_{i}^y \sigma_{i+1}^y+ J_z \sigma_i^z \sigma_{i+1}^z - h\sigma_i^z\right]$$
$$\mathcal{H} = - \frac{1}{2} \sum_{i}^N \left[ J_x \sigma_i^x \sigma_{i+1}^x +J_y \sigma_{i}^y \sigma_{i+1}^y+ - h\sigma_i^z\right]$$
$$J_x = \left( \frac{1+ \gamma}{2} \right)$$
$$J_y = \left( \frac{1- \gamma}{2} \right)$$
- Tensor Networks
Quantum Many-Body Problems
magnet