Institute of Theoretical and Applied Informatics, Polish Academy of Sciences
Ludmila Botelho
"...might compose elaborate and scientific pieces of music of any degree of complexity or extent"
Proposition: Find the minimum energy in a landscape
$$ H(t) = \left(1-\frac{t}{T}\right)H_0+ \frac{t}{T}H_P $$
$$ H_P = - \sum_{i > j} J_{ij}s_i s_j - \sum _i h_is_i, $$
$$ H(t) = \left(1-\frac{t}{T}\right)H_0+ \frac{t}{T}H_P $$
- Can be encoded in Binary Values
\( s_i \in \{-1,+1\} \)
\( s_i \leftrightarrow x_i = \frac{1-s_i}{2} \)
\( x_i \in\{0,1\} \)
Minimizing quadratic functions
$$ y=x^TQx $$
Penalty Method
$$ \text{min } y=f(x) $$
$$ \text{subject to: } x_1 +x_2 + x_3= 1 $$
$$\text{min }y=f(x)+P\left(\sum_{i=1}^3 x_i -1\right)^2 $$
Binary variables
Constants
4
1
rest
measure
Durations
2
Pitches
C
D
A
E
G
F
B
C
$$\sum_{j \in P} x_{i,j} = 1$$
How to define the binary variables?
$$\left ( 1- \sum_{j \in P} x_{i,j} \right )^2$$
$$x_{i,C} + x_{i+1,D} \leq 1$$
$$x_{i,C} + x_{i+1,C} + x_{i+2,C} \leq 2 $$
$$P=\{p_1,p_2,\dots,p_k \}$$
\(x_{i,j}\) for \(i \in [n]\) and \(j \in P\)
$$P=\{\mathtt{C}, \mathtt{D}, \mathtt{E}, \mathtt{G}\}$$
Optimization
$$ -\sum_{ \substack{i\in [n-1] \\ j,j' \in P}} W_{j,j'} x_{i,j} x_{i+1,j'} $$
weights
Exemple: Ode to Joy excerpt
$$W_{F\#4,E4} = 2, $$
$$W_{F\#4,F\#4} = 2,$$
$$W_{F\#4,G4} = 1$$
$$\sum_{\substack{i \in [n] \\ j \in D}} d(j)y_{i,j} = L$$
$$ \sum_{j \in D} y_{i,j} = 1$$
$$D = \{1,2,3,4\}$$
$$j \in D$$
$$\sum_{j \in P} x_{i,j} = 3$$
$$(1-x_{i,p_{i_j}})$$
G
E
D
G
B
B
G
Boléro (Ravel, Maurice)
Monophonic
Polyphonic
Phrase Identification
Huang, Jiun-Long, Shih-Chuan Chiu, and Man-Kwan Shan. "Towards an automatic music arrangement framework using score reduction." ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) 8.1 (2012): 1-23.
Phrase Identification
- Pitch and rhythm
- Maximize information
$$x_{ij} =\begin{cases}1,& \text{$j$'th phrase of track $i$ is selected}\\ 0, & \text{otherwise.}\end{cases} $$
$$- \sum_{i=1}^N\sum_{j=1}^{P_i} e(p_{ij})x_{ij}$$
$$E(s) = - \sum_{i=1}^N P(x_i)\ln P(x_i)$$
$$x_{ij} = 1 \iff m_{ik}=1 k \in S_{ij}$$
$$\sum_{i=1}^N m_{ik} = M \ \ \text{for} \ \ k=1,\dots,K $$
Set of measures in phrase \(j\) of \(i\)’th track
Number of measures
Number of tracks after reduction
binary variable
- Constraints about note ranges
- Dissonance criteria
Guitar: 4 octaves
Piano: 8 octaves