e3nn

optimization options

optimize_einsums=False optimize_einsums=True
jit_script_fx=False 400ms 1min 20s
jit_script_fx=True 1.4s 1min 20s

mul=32

L=0,1,2,3...,8

FullyConnectedTensorProduct(irreps x irreps -> irreps | 40808448 paths | 40808448 weights)

init time

exec time

optimize_einsums=False optimize_einsums=True
jit_script_fx=False 1min 120ms
jit_script_fx=True 1min 100ms

machine: my laptop

optimize_einsums=False optimize_einsums=True
jit_script_fx=False 4s 12s
jit_script_fx=True 12s 24s

machine: my laptop

init time

irreps_in = o3.Irreps('1x0e')   # Single scalars
lmax = 6
irreps_out = o3.Irreps.spherical_harmonics(lmax)  # Predict vectors

r_max = 1.5

model_kwargs = {
    'irreps_in': irreps_in, 'irreps_out': irreps_out,         # Data-types of input and output
    'max_radius': r_max, 'num_neighbors': 3, 'num_nodes': 6,  # Cutoff radius and numbers used to normalize conv
    'mul': 1, 'layers': 2, 'lmax': lmax, 'pool_nodes': True,  # Network details
}

# Create three random models
model1 = SimpleNetwork(**model_kwargs)
model2 = SimpleNetwork(**model_kwargs)
model3 = SimpleNetwork(**model_kwargs)

1min 20s with compute_right=True

Made with Slides.com