I will explain this slide:
\(g_1, g_2 \in G\)
\(g_1 \circ g_2\)
neutral element
inverse
A kind of data that transforms in a certain way under the group action
\( \xrightarrow{g} \)
\( \xrightarrow{g} \)
vector space on which the group acts linearly
irreducible representations of \(G\)
Direct sum
Tensor product
\(\oplus\)
\(=\)
\(\otimes\)
\(=\)
bigger vector space \(d=d_1+d_2\)
bigger vector space \(d=d_1 d_2\)
irreducible representations of \(G\)
\( \otimes \)
\(= \)
\( \oplus \)
\(= \)
one number
three numbers
five numbers
seven numbers
nine numbers
eleven numbers
...
one number
three numbers
five numbers
seven numbers
nine numbers
eleven numbers
...
odd
even
\(d=1\)
(\(L=0\))
\(d=3\)
(\(L=1\))
\(d=5\)
(\(L=2\))
odd
even
\(d=1\)
(\(L=0\))
\(d=3\)
(\(L=1\))
\(d=5\)
(\(L=2\))
\(d=7\)
(\(L=3\))
\(d=9\)
(\(L=5\))
\(d=11\)
(\(L=6\))
\( D_{L} \otimes D_{J} = D_{|L-J|} \oplus \dots \oplus D_{L+J}\)
\( 1_o \otimes 2_e = 1_o \oplus 2_o \oplus 3_o \)
\(\otimes\) = \(\oplus\) \(\oplus\)
parity simply multiply
\(\otimes\) = \(\oplus\) \(\oplus\)
\(\otimes\) = \(\oplus\) \(\oplus\)
\(1_e \otimes 1_o = 0_o \oplus 1_o \oplus 2_o\)
\(2_e \otimes 3_o = 1_o \oplus 2_o \oplus 3_o \oplus 4_o \oplus 5_o\)
\(\otimes\) = \(\oplus\) \(\oplus\) \(\oplus\) \(\oplus\)
\(0_e\)
\(0_o\)
\(1_e\)
\(1_o\)
\(2_e\)
\(2_o\)
\(3_e\)
\(3_o\)
...
\(0_e\)
\(0_o\)
\(1_e\)
\(1_o\)
\(2_e\)
\(2_o\)
\(3_e\)
\(3_o\)
...
\(0_e\)
\(0_o\)
\(1_e\)
\(1_o\)
\(2_e\)
\(2_o\)
\(3_e\)
\(3_o\)
...
\(0_e\)
\(0_o\)
\(1_e\)
\(1_o\)
\(2_e\)
\(2_o\)
\(3_e\)
\(3_o\)
...
\(0_e\)
\(0_o\)
\(1_e\)
\(1_o\)
\(2_e\)
\(2_o\)
\(3_e\)
\(3_o\)
...
\(0_e\)
\(0_o\)
\(1_e\)
\(1_o\)
\(2_e\)
\(2_o\)
\(3_e\)
\(3_o\)
...
linear & equivariant \(\Rightarrow L(\vec r, x) = H(\vec r) \otimes x\)
\(H\) is any equivariant function that outputs all the needed representations
\(H(g \vec r) = g H(\vec r)\)
\(Y\) are the spherical harmonics
\(R\) is any scalar function
\(\Rightarrow H(\vec r) = R(r) Y(\frac{\vec r}{r}) \)
\(H(\vec r) = H(g_{\vec r} \vec e_z) = g_{\vec r} H(\vec e_z)\)
\(H(\vec e_z) = H(g_z \vec e_z) = g_z H(\vec e_z)\)
\(\Leftrightarrow\) spherical harmonics
Spherical harmonics
\(Y^L(g\vec r) = g Y^L(\vec r)\)
0
+1
-1
\(Y^0\)
\(Y^1\)
\(Y^2\)
\(Y^L: s^2 \longrightarrow \mathbb{R}^{2L+1}\)
\(\displaystyle y_a = \sum_{b, \text{path}} R(\|\vec r_{ab}\|, \omega) \; Y^L(\frac{\vec r_{ab}}{\|\vec r_{ab}\|}) \otimes x_b\)
learned function
spherical harmonics
tensor product
linear
equivariant
1-neighbor
one degrees of freedom per path