to
(CSE @IIT Gandhinagar)
A collection of rankings
over a set of alternatives.
A collection of rankings
over a set of alternatives.
A collection of partial orders
over a set of alternatives.
A collection of weak orders
over a set of alternatives.
A collection of rankings
over a set of alternatives.
A collection of rankings
over a set of alternatives.
A single consensus ranking.
A collection of rankings
over a set of alternatives.
A single consensus ranking.
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
A collection of rankings
over a set of alternatives.
A single consensus ranking.
A collection of rankings
over a set of alternatives.
A singleย ranking that satisfies unanimity, yada yada.
A collection of rankings
over a set of alternatives.
A singleย ranking that satisfies unanimity, yada yada.
A collection of rankings
over a set of alternatives.
A singleย ranking that minimises
dissatisfication.
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
v/s
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
v/s
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
v/s
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
v/s
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
v/s
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
A notion of distance
between permutations would be
a useful measure of dissatisfaction.
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | |||||
๐ | |||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | ||||
๐ | |||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | |||
๐ | |||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ||
๐ | |||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | |||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โ๏ธ | ||||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โโ๏ธ | โ๏ธ | |||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โโ๏ธ | โ๏ธ | ๐คทโโ๏ธ | ||
๐ | |||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โโ๏ธ | โ๏ธ | ๐คทโโ๏ธ | ||
๐ | ๐ก | ||||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โโ๏ธ | โ๏ธ | ๐คทโโ๏ธ | ||
๐ | ๐ก | ๐ฅบ | |||
๐ฉ | |||||
๐ฎ |
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐ | ๐ | ๐ | ๐ฉ | ๐ฎ | |
---|---|---|---|---|---|
๐ฐ | โ๏ธ | โ๏ธ | โ๏ธ | ๐คฆโโ๏ธ | |
๐ | โโ๏ธ | โ๏ธ | ๐คทโโ๏ธ | ||
๐ | ๐ก | ๐ฅบ | |||
๐ฉ | ๐ญ | ||||
๐ฎ |
distance = #of disagreements
A collection of rankings
over a set of alternatives.
A singleย ranking that minimises
the total Kendall tau or bubble sort distance.
Bartholdi, Tovey and Tick, Social Choice and Welfare 1989,
Dwork, Kumar, Naor, and Sivakumar, WWW 2001
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
4
c
f
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
4
c
f
5
g
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
4
c
f
5
g
6
e
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
4
c
f
5
g
6
e
7
h
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
a
3
b
d
4
c
f
5
g
6
e
7
h
8
i
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
1
a
b
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
2
c
1
a
b
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
3
e
2
c
1
a
b
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
d
4
3
e
2
c
1
a
b
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
f
5
i
d
4
3
e
2
c
1
a
b
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
g
6
f
5
i
d
4
3
e
2
c
1
a
b
h
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
g
6
f
5
i
d
4
3
e
2
c
1
a
b
h
7
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
g
6
f
5
i
d
4
3
e
2
c
1
a
b
h
7
8
1
2
3
4
5
6
7
8
a
b
c
d
e
f
g
h
i
g
f
i
d
e
c
h
a
b
d
c
f
g
e
h
i
a
b
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
a
b
d
e
g
h
i
g
i
d
e
h
a
b
d
g
e
h
i
a
b
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
f
f
c
c
c
f
1
2
3
4
5
6
7
8
a
b
d
e
g
h
i
g
i
d
e
h
a
b
d
g
e
h
i
a
b
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
f
f
c
c
c
f
1
2
3
4
5
6
7
8
a
b
d
e
g
h
i
g
i
d
e
h
a
b
d
g
e
h
i
a
b
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
f
f
c
c
c
f
g
i
e
h
a
g
e
h
i
a
b
8
7
6
5
4
3
2
1
f
f
c
c
b
d
8
7
6
5
4
3
2
1
d
If two rankings \(\sigma\) and \(\tau\)
are complete opposites,
then any ranking \(\rho\) will have
a total Kemeny distance of \({n \choose 2}\)
from both of them combined.
1
2
3
4
5
6
7
8
7
6
5
4
3
2
1
8
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
7
3
1
2
3
4
5
6
7
8
8
6
5
4
2
1
7
3
7
3
1
2
4
5
6
8
8
6
5
4
2
1
7
3
7
3
3
7
This creates a neat
cancelation effect
& forces a minimum Kemeny score of
\(2{n \choose 2} + 2{m \choose 2} + 2m\)
on any ranking.
1
2
3
4
5
6
7
8
a
b
d
e
g
h
i
g
i
d
e
h
a
b
d
g
e
h
i
a
b
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
f
f
c
c
c
f
g
i
e
h
a
g
e
h
i
a
b
8
7
6
5
4
3
2
1
f
f
c
c
b
d
8
7
6
5
4
3
2
1
d
This creates a neat
cancelation effect
& forces a minimum Kemeny score of
\(2{n \choose 2} + 2{m \choose 2} + 2m\)
on any ranking.
This creates a neat
cancelation effect
& forces a minimum Kemeny score of
\(2{n \choose 2} + 2{m \choose 2} + 2m\)
on any ranking.
+ 2k
if and only if G has a FES of size at most k.
final score \(\leq\)
(The cost of the backedges can be isolated.)
factor 11/7-approximation (randomised):
Ailon, Charikar, and Newman, STOC 2005 โย JACM 2008
factor 8/5-approximation:
van Zuylen and Williamson, WAOA 2007
Kenyon-Mathieu and Schudy, STOC 2007
ย
๐คจ
FPT Algorithm:
Solve the problem in time \(f(k)\cdot n^{O(1)}\), for some appropriate parameter \(k\).
Kernelization:
Reduce the problem in time \(n^{O(1)}\),
to an equivalent instance whose size is bounded by \(f(k)\),
for some appropriate parameter \(k\).
Marek Karpinski and Warren Schudy; ISAAC 2010
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
๐
๐
1
4
Does there exist at least one solution?
Can you find me at least one solution?
How many solutions are there?
Enlist all the solutions.
Find me a useful bunch of solutions.
Completion Ordering Problem
(๐ \(\succ\) ๐ฐ), (๐ฉ \(\succ\) ๐ฎ), etc.
Extend a given partial order to a total order,
given a cost function that associates a cost with every ordered pair of elements.
๐ \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฐย \(\succ\) ๐ย \(\succ\) ๐ฎ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฐย \(\succ\) ๐ \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐ฎ
๐ฎย \(\succ\) ๐ \(\succ\) ๐ฐ \(\succ\) ๐ฉ \(\succ\) ๐
๐ฎย \(\succ\) ๐ฐย \(\succ\) ๐ \(\succ\) ๐ฉ \(\succ\) ๐
Partial Order: all unanimous pairs.
Cost of adding (๐,๐) = 4
Cost of adding (๐,๐) = 1
etc.
Parameter: pathwidth of the co-comparability graph of \(\rho\)
Main result: A DP-based algorithm for
Diverse Completion Ordering
ย
that makes use of a \(\rho\)-consistent path decomposition.
Path Decompositions as seen on Wikipedia
$$\mathcal{O}\left((\mathrm{w} ! \cdot \delta)^{\mathcal{O}(r)} \cdot s^{r^{2}} \cdot d \cdot n \cdot \log \left(n^{2} \cdot m\right)\right)$$
Running time for Diverse Completion Order
Also new: better running times for PCO
(not just ย the restriction to KRA)
Given a partial order \(\rho \subseteq C \times C\) and a cost function \(\mathfrak{c}: C \times C \rightarrow \mathbb{N}\), one can solve a PCO instance \((\rho, \mathfrak{c}, k)\) in time \(|C| \cdot 2^{\mathcal{O}(\sqrt{k})}+\mathcal{O}\left(|C|^{2} \cdot \log (k)\right)\).
Questions?