Parameterized Approaches

Neeldhara Misra

to

KEMENY RANK AGGREGATION

IISc MSR Seminar Series

18 FEB 2022

(CSE @IIT Gandhinagar)

Plan

Input.

A collection of rankings

over a set of alternatives.

Input.

A collection of rankings

over a set of alternatives.

Input.

A collection of partial orders

over a set of alternatives.

Input.

A collection of weak orders

over a set of alternatives.

Input.

A collection of rankings

over a set of alternatives.

Input.

A collection of rankings

over a set of alternatives.

Output.

A single consensus ranking.

Input.

A collection of rankings

over a set of alternatives.

Output.

A single consensus ranking.

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

Input.

A collection of rankings

over a set of alternatives.

Output.

A single consensus ranking.

Input.

A collection of rankings

over a set of alternatives.

Output.

A singleย ranking that satisfies unanimity, yada yada.

Input.

A collection of rankings

over a set of alternatives.

Output.

A singleย ranking that satisfies unanimity, yada yada.

Input.

A collection of rankings

over a set of alternatives.

Output.

A singleย ranking that minimises

dissatisfication.

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

v/s

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

v/s

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

v/s

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

v/s

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

v/s

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

A notion of distance

between permutations would be

a useful measure of dissatisfaction.

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ
๐Ÿ•
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ
๐Ÿ•
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ
๐Ÿ•
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ
๐Ÿ•
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ•
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โœ”๏ธ
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โ€‹โœ”๏ธ โœ”๏ธ
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โ€‹โœ”๏ธ โœ”๏ธ ๐Ÿคทโ€โ™€๏ธ
๐Ÿ”
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โ€‹โœ”๏ธ โœ”๏ธ ๐Ÿคทโ€โ™€๏ธ
๐Ÿ” ๐Ÿ˜ก
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โ€‹โœ”๏ธ โœ”๏ธ ๐Ÿคทโ€โ™€๏ธ
๐Ÿ” ๐Ÿ˜ก ๐Ÿฅบ
๐Ÿฉ
๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐ ๐Ÿ• ๐Ÿ” ๐Ÿฉ ๐ŸŒฎ
๐Ÿฐ โœ”๏ธ โœ”๏ธ โœ”๏ธ ๐Ÿคฆโ€โ™€๏ธ
๐Ÿ• โ€‹โœ”๏ธ โœ”๏ธ ๐Ÿคทโ€โ™€๏ธ
๐Ÿ” ๐Ÿ˜ก ๐Ÿฅบ
๐Ÿฉ ๐Ÿ˜ญ
๐ŸŒฎ

distance = #of disagreements

Input.

A collection of rankings

over a set of alternatives.

Output.

A singleย ranking that minimises

the total Kendall tau or bubble sort distance.

Bartholdi, Tovey and Tick, Social Choice and Welfare 1989,

Dwork, Kumar, Naor, and Sivakumar, WWW 2001

The problem of computing
a Kemeny optimal permutation
for a given collection of \(k\) full lists, for even integers \(k \geq 4\),
is NP-hard.

Minimum Feedback Edge Set

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

4

c

f

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

4

c

f

5

g

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

4

c

f

5

g

6

e

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

4

c

f

5

g

6

e

7

h

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

2

a

3

b

d

4

c

f

5

g

6

e

7

h

8

i

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

1

a

b

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

2

c

1

a

b

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

3

e

2

c

1

a

b

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

d

4

3

e

2

c

1

a

b

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

f

5

i

d

4

3

e

2

c

1

a

b

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

g

6

f

5

i

d

4

3

e

2

c

1

a

b

h

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

g

6

f

5

i

d

4

3

e

2

c

1

a

b

h

7

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

g

6

f

5

i

d

4

3

e

2

c

1

a

b

h

7

8

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

i

g

f

i

d

e

c

h

a

b

d

c

f

g

e

h

i

a

b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

d

e

g

h

i

g

i

d

e

h

a

b

d

g

e

h

i

a

b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

f

f

c

c

c

f

Minimum Feedback Edge Set

on Directed Graphs

1

2

3

4

5

6

7

8

a

b

d

e

g

h

i

g

i

d

e

h

a

b

d

g

e

h

i

a

b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

f

f

c

c

c

f

1

2

3

4

5

6

7

8

a

b

d

e

g

h

i

g

i

d

e

h

a

b

d

g

e

h

i

a

b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

f

f

c

c

c

f

g

i

e

h

a

g

e

h

i

a

b

8

7

6

5

4

3

2

1

f

f

c

c

b

d

8

7

6

5

4

3

2

1

d

If two rankings \(\sigma\) and \(\tau\)
are complete opposites,
then any ranking \(\rho\) will have
a total Kemeny distance of \({n \choose 2}\)

from both of them combined.

1

2

3

4

5

6

7

8

7

6

5

4

3

2

1

8

1

2

3

4

5

6

7

8

8

7

6

5

4

3

2

1

1

2

3

4

5

6

7

8

8

7

6

5

4

3

2

1

7

3

1

2

3

4

5

6

7

8

8

6

5

4

2

1

7

3

7

3

1

2

4

5

6

8

8

6

5

4

2

1

7

3

7

3

3

7

This creates a neat

cancelation effect

& forces a minimum Kemeny score of

\(2{n \choose 2} + 2{m \choose 2} + 2m\)

on any ranking.

1

2

3

4

5

6

7

8

a

b

d

e

g

h

i

g

i

d

e

h

a

b

d

g

e

h

i

a

b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

f

f

c

c

c

f

g

i

e

h

a

g

e

h

i

a

b

8

7

6

5

4

3

2

1

f

f

c

c

b

d

8

7

6

5

4

3

2

1

d

This creates a neat

cancelation effect

& forces a minimum Kemeny score of

\(2{n \choose 2} + 2{m \choose 2} + 2m\)

on any ranking.

This creates a neat

cancelation effect

& forces a minimum Kemeny score of

\(2{n \choose 2} + 2{m \choose 2} + 2m\)

on any ranking.

+ 2k

if and only if G has a FES of size at most k.

final score \(\leq\)

(The cost of the backedges can be isolated.)

factor 11/7-approximation (randomised):
Ailon, Charikar, and Newman, STOC 2005
โ†’ย JACM 2008

factor 8/5-approximation:
van Zuylen and Williamson, WAOA 2007

Kenyon-Mathieu and Schudy, STOC 2007

Parameterized

Approaches

ย 

๐Ÿคจ

FPT Algorithm:

Solve the problem in time \(f(k)\cdot n^{O(1)}\), for some appropriate parameter \(k\).

Kernelization:

Reduce the problem in time \(n^{O(1)}\),
to an equivalent instance whose size is bounded by \(f(k)\),
for some appropriate parameter \(k\).

  • number of votes \(n\)
  • number of candidates \(m\)
  • Kemeny score \(k\)
  • max. range of candidate positions
  • avg. range of candidate positions
  • avg. KT-distance \(d_a\)
  • max. KT-distance \(d_m\)
  • number of votes \(n\)
  • number of candidates \(m\)
  • Kemeny score \(k\)
  • max. range of candidate positions
  • avg. range of candidate positions
  • avg. KT-distance \(d_a\)
  • max. KT-distance \(d_m\)

Marek Karpinski and Warren Schudy; ISAAC 2010

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿ•

๐Ÿ”

1

4

Decision Problems.

Does there exist at least one solution?

Search Problems.

Can you find me at least one solution?

Counting Problems.

How many solutions are there?

Enumeration Problems.

Enlist all the solutions.

Diverse Problems.

Find me a useful bunch of solutions.

Completion Ordering Problem

(๐Ÿ” \(\succ\) ๐Ÿฐ), (๐Ÿฉ \(\succ\) ๐ŸŒฎ), etc.

Extend a given partial order to a total order,

given a cost function that associates a cost with every ordered pair of elements.

๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐Ÿฐย \(\succ\) ๐Ÿ•ย \(\succ\) ๐ŸŒฎ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฉ \(\succ\) ๐ŸŒฎ

๐ŸŒฎย \(\succ\) ๐Ÿ” \(\succ\) ๐Ÿฐ \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ•

๐ŸŒฎย \(\succ\) ๐Ÿฐย \(\succ\) ๐Ÿ• \(\succ\) ๐Ÿฉ \(\succ\) ๐Ÿ”

Partial Order: all unanimous pairs.

Cost of adding (๐Ÿ”,๐Ÿ•) = 4

Cost of adding (๐Ÿ•,๐Ÿ”) = 1

etc.

KRA โ†’ Completion Ordering

Parameter: pathwidth of the co-comparability graph of \(\rho\)

Main result: A DP-based algorithm for
Diverse Completion Ordering

ย 

that makes use of a \(\rho\)-consistent path decomposition.

Path Decompositions as seen on Wikipedia

$$\mathcal{O}\left((\mathrm{w} ! \cdot \delta)^{\mathcal{O}(r)} \cdot s^{r^{2}} \cdot d \cdot n \cdot \log \left(n^{2} \cdot m\right)\right)$$

Running time for Diverse Completion Order

Also new: better running times for PCO
(not just ย the restriction to KRA)

Given a partial order \(\rho \subseteq C \times C\) and a cost function \(\mathfrak{c}: C \times C \rightarrow \mathbb{N}\), one can solve a PCO instance \((\rho, \mathfrak{c}, k)\) in time \(|C| \cdot 2^{\mathcal{O}(\sqrt{k})}+\mathcal{O}\left(|C|^{2} \cdot \log (k)\right)\).

Takeaways

  1. KRA is a fundamental and fun rank aggregation problem that has connections with weighted FAST and PCO.
    ย 
  2. Very well-studied from the approximation lens as well as from a parameterized perspective.
    ย 
  3. Developments on diverse variants are recent and relevant; the space for exploring structural parameters is wide open.

Questions?

Thanks!ย