SPIE Astro 2024 Paper 13095-1
X
The Array is capable of resolving details as small as 200 micro-arcseconds, equivalent to the angular size of a coin seen from a distance of 10,000 miles (16,000 km).
"the CHARA Array continues to offer exceptional opportunities for scientific discovery using the longest operating baselines in the world among optical/near-IR interferometers"
Spatial resolution
• 0.20 mas at R (650 nm)
• 0.52 mas at H (1.67 μm)
• 0.66 mas at K (2.13 μm)
34 to 331m
The CHARA Array is operated by the Center for High Angular Resolution Astronomy at Georgia State University in Atlanta.
The two-telescope CLASSIC beam combiner
The MIRC-X H-band combiner. A six-telescope cryogenic K-band beam combiner, MYSTIC
The upgrades to the six-telescope MIRC-X combiner
SPICA combines all six-telescopes and provides a range of spectral dispersions at visible wavelengths.
Precision Astronomical Visible Observations (PAVO) instrument
The (PAVO) visible beam combiner
the ALOHA fiber experiment.
Pushing the sensitivity limits of the Array in order to resolve the cores of Active Galactic Nuclei.
Open access time at the CHARA Array is available to the astronomical community through the National Optical-Infrared Astronomy Research Laboratory (NOIR Lab).
CHARA Science meeting 2023 - Atlanta, GA
CHARA Science meeting 2024 - Tucson, AZ
Ashley Elliott 2024
Ashley Elliott (LSU) has compiled interferometric measurements from CHARA and more to create an empirical HR diagram.
Angular Dia. + Parallax → Linear Radius
Diameter + Bolometric Flux → Teff
interferometric angular diameters provide key benchmark data to evaluate calibrations of effective temperature from large-scale spectroscopic and photometric surveys - SED/CHARA
693 stars, σθ < 5%
Castor A and B
HD 284163
hierarchical quadruple system
ARMADA astrometry survey to search for triple systems among known intermediate mass binaries.
new orbits of 12 companions around early F- to B-type binaries,
Complementary radial velocity measurements for some of these systems yield very reliable mass estimates.
The origin of the rapid spin of the emission line Be stars is a long-standing mystery that may involve prior mass transfer in an interacting binary. These companions are the stripped-down remnants of the former, more massive companion that transferred mass and angular momentum to the Be star through Roche lobe overflow.
3D orbits through combined spectroscopic and astrometric orbit fitting to determine stellar masses at this hitherto unseen stage of binary star evolution.
Be star HR 2142
Gleise 486
Interferometric observations of exoplanet host stars provide the means to determine the detailed stellar characteristics that are required to find the exoplanet properties.
Planet formation is generally considered in the context of young stars, but mass loss in older stars may also play a role in making planets at the end of a star's life.
If so, represents the first example of a polar circumbinary planet.
Image credit: Dr Mark A. Garlick / markgarlick.com
post-AGB star AC Her
→ the large cavity in the center of the circumbinary disk is not created by the tidal action of the central binary.
The cool hypergiant star RW Cep experienced a Great Dimming event in 2022:
Patchy appearance results from dust created by a huge ejection from the star
Illustration credit: NASA, ESA, and E. Wheatley (STScI)
Anugu and colleagues are continuing to monitor the star with CHARA to explore how the surface appearance changes as the star brightens again.
What causes 1.2 mag
drop in V-band flux?
The disks around T Tau type and other Young Stellar Objects (YSOs) are the birthplaces of planets, and interferometric imaging offers important clues about the environments surrounding planet formation.
MIRC-X observations of to build a model of the circumstellar disk's geometric and physical properties.
The process of planet formation involves the development of instabilities in the disk that can be followed through time series interferometric observations at very high angular resolutions.
luminous Herbig Be star HD 190073
V1925 Aql
NGC 4151
bright central region of the active galactic nucleus of the Seyfert galaxy NGC 4151.
(CHARA Michelson Array Pathfinder)
Mobile Telescope Transport (TR116)
Planewave RC telescope
AOB
fiber injection
S4
S3
ALOHA – Univ. Limoges
Single-mode PM fibers
λ=810 nm, 240 m long
Laying on the ground
Connect S1+S2
On-sky fringes
Magri, Grossard, Reynaud et al. (submitted)
CMAP
Single-mode PM fibers
λ=1.6 μm, 650 m long
Trench: 18 inches deep
new improvements on the way
TelAO
LabAO
WFS
phase
DM
(500 frame avg of cal source)
image
new AO software
Beam Combiners
MIRC-X
STS & STST
MYSTIC (the Michigan Young STar Imager at CHARA)
Aug 2023 - First fringes
(Stellar Parameters and Imaging with a Cophased Array)
SPICA-FT H-band 6-beam ABCD combiner by VLC Photonics, inspired by GRAVITY
low-resolution mode uses MIRC-X for fringe-tracking
The goal of the SPICA project is to provide a large and homogeneous set of stellar parameters across the HR-diagram. - measure the angular diameters of 1000 stars.
spectrograph
Aug 2023 - First fringes with SPICA/MIRC-X/MYSTIC
Currently two injection stages
(CHARA Array Integrated Optics Testbed)
collaboration with Leibniz Institute for Astrophysics Potsdam (AIP)
ULI optics for JHK bands
(Siliprandi, Labadie, Madhav, Dinkelaker, Thompson, Benoît)
Apr 2024 - First fringes
optimize simultaneous observations in visible + NIR
1100m
600m
~17m
S3
S4
W5
Max spatial resolution
• 0.06 mas at R (650 nm)
• 0.16 mas at H (1.67 μm)
• 0.20 mas at K (2.13 μm)
17 to 1100m
The full Michelson Array would offer 12 total positions, creating 66 possible baselines.
Hal McAlister - Fellow of the AAS 2022
STAFF TRANSITIONS
Theo ten Brummelaar - 2022 Fizeau Lifetime Achievement Award
GSU 2023 Ignite Award to staff
COAS 2024 staff award to Rob Ligon
Snowstorm 2023
Road access was cut off for 12 days stranding a dedicated CHARA group
NOAO open access time
dedicated to community growth in US and beyond
Rob Ligon - talk up next (on behalf of Rainer Koehler)
[1] Eisenhauer, F., Monnier, J. D., and Pfuhl, O., “Advances in Optical/Infrared Interferometry,” 61, 237–285 (Aug. 2023).
[2] Ridgway, S. and Schaefer, G., “The NOIRLab/CHARA Connection Marks Decadal Milestones Up to 40 Years,” The NOIRLab Mirror 5, 36 (Aug. 2023).
[3] Gies, D. R., Anderson, M. D., Anugu, N., ten Brummelaar, T. A., Castillo, V., Farrington, C. D., Golden, S., Jones, J. W., Klement, R., K ̈ohler, R., Lanthermann, C., Ligon, E. R., Majoinen, O., McAlister, H. A., Ridgway, S. T., Schaefer, G. H., Scott, N. J., Turner, N. H., Vargas, N. L., Webster, L., and Woods, C., “Recent technical and scientific highlights from the CHARA Array,” in [Optical and Infrared Interferometry and Imaging VIII ], M ́erand, A., Sallum, S., and Sanchez-Bermudez, J., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 12183, 1218303 (Aug. 2022).
[4] Yu, J., Khanna, S., Themessl, N., Hekker, S., Dr ́eau, G., Gizon, L., and Bi, S., “Revised Extinctions and Radii for 1.5 Million Stars Observed by APOGEE, GALAH, and RAVE,” 264, 41 (Feb. 2023).
[5] Korolik, M., Roettenbacher, R. M., Fischer, D. A., Kane, S. R., Perkins, J. M., Monnier, J. D., Davies, C. L., Kraus, S., Le Bouquin, J.-B., Anugu, N., Gardner, T., Lanthermann, C., Schaefer, G. H., Setterholm, B., Brewer, J. M., Llama, J., Zhao, L. L., Szymkowiak, A. E., and Henry, G. W., “Refining the Stellar Parameters of τ Ceti: a Pole-on Solar Analog,” 166, 123 (Sept. 2023).
[6] Konstantinova-Antova, R., Georgiev, S., L`ebre, A., Palacios, A., Morin, J., Bogdanovski, R., Abbott, C., Baron, F., Auri`ere, M., Drake, N. A., Tsvetkova, S., Josselin, E., Paladini, C., Mathias, P., and Zamanov, R., “A long-term study of the magnetic field and activity in the M giant RZ Ari. Magnetism and planet engulfment in a fairly evolved star?,” 681, A36 (Jan. 2024).
[7] Caballero, J. A., Gonz ́alez- ́Alvarez, E., Brady, M., Trifonov, T., Ellis, T. G., Dorn, C., Cifuentes, C., Molaverdikhani, K., Bean, J. L., Boyajian, T., Rodr ́ıguez, E., Sanz-Forcada, J., Zapatero Osorio, M. R., Abia, C., Amado, P. J., Anugu, N., B ́ejar, V. J. S., Davies, C. L., Dreizler, S., Dubois, F., Ennis, J., Espinoza, N., Farrington, C. D., L ́opez, A. G., Gardner, T., Hatzes, A. P., Henning, T., Herrero, E.,
Herrero-Cisneros, E., Kaminski, A., Kasper, D., Klement, R., Kraus, S., Labdon, A., Lanthermann, C., Le Bouquin, J. B., L ́opez Gonz ́alez, M. J., Luque, R., Mann, A. W., Marfil, E., Monnier, J. D., Montes, D., Morales, J. C., Pall ́e, E., Pedraz, S., Quirrenbach, A., Reffert, S., Reiners, A., Ribas, I., Rodr ́ıguez-L ́opez, C., Schaefer, G., Schweitzer, A., Seifahrt, A., Setterholm, B. R., Shan, Y., Shulyak, D., Solano, E., Sreenivas, K. R., Stef ́ansson, G., St ̈urmer, J., Tabernero, H. M., Tal-Or, L., ten Brummelaar, T., Vanaverbeke, S., von Braun, K., Youngblood, A., and Zechmeister, M., “A detailed analysis of the Gl 486 planetary system,” 665, A120 (Sept. 2022).
[8] Martin, R. G., Lubow, S. H., Vallet, D., Anugu, N., and Gies, D. R., “AC Her: Evidence of the First Polar Circumbinary Planet,” 957, L28 (Nov. 2023).
[9] Stuber, T. A., Kirchschlager, F., Pearce, T. D., Ertel, S., Krivov, A. V., and Wolf, S., “How much large dust could be present in hot exozodiacal dust systems?,” 678, A121 (Oct. 2023).
[10] Anugu, N., Baron, F., Gies, D. R., Lanthermann, C., Schaefer, G. H., Shepard, K. A., Brummelaar, T. t., Monnier, J. D., Kraus, S., Le Bouquin, J.-B., Davies, C. L., Ennis, J., Gardner, T., Labdon, A., Roettenbacher, R. M., Setterholm, B. R., Vollmann, W., and Sigismondi, C., “The Great Dimming of the Hypergiant Star RW Cephei: CHARA Array Images and Spectral Analysis,” 166, 78 (Aug. 2023).
[11] Labdon, A., Kraus, S., Davies, C. L., Kreplin, A., Zarrilli, S., Monnier, J. D., Le Bouquin, J.-B., Anugu, N., Setterholm, B., Gardner, T., Ennis, J., Lanthermann, C., ten Brummelaar, T., Schaefer, G., and Harries, T. J., “Imaging the warped dusty disk wind environment of SU Aurigae with MIRC-X,” 678, A6 (Oct. 2023).
[12] Ibrahim, N., Monnier, J. D., Kraus, S., Le Bouquin, J.-B., Anugu, N., Baron, F., Brummelaar, T. T., Davies, C. L., Ennis, J., Gardner, T., Labdon, A., Lanthermann, C., M ́erand, A., Rich, E., Schaefer, G. H., and Setterholm, B. R., “Imaging the Inner Astronomical Unit of the Herbig Be Star HD 190073,” 947, 68 (Apr. 2023).
[13] Bourdarot, G., Berger, J. P., Lesur, G., Perraut, K., Malbet, F., Millan-Gabet, R., Le Bouquin, J. B., Garcia-Lopez, R., Monnier, J. D., Labdon, A., Kraus, S., Labadie, L., and Aarnio, A., “FU Orionis disk outburst: Evidence for a gravitational instability scenario triggered in a magnetically dead zone,” 676, A124 (Aug. 2023).
[14] Zarrilli, S. A., Kraus, S., Kreplin, A., Monnier, J. D., Gardner, T., M ́erand, A., Morrell, S., Davies, C. L., Labdon, A., Ennis, J., Setterholm, B., Le Bouquin, J.-B., Anugu, N., Lanthermann, C., Schaefer, G., and ten Brummelaar, T., “Characterising the orbit and circumstellar environment of the high-mass binary MWC 166 A,” 665, A146 (Sept. 2022).
[15] Lanthermann, C., Le Bouquin, J. B., Sana, H., M ́erand, A., Monnier, J. D., Perraut, K., Frost, A. J., Mahy, L., Gosset, E., De Becker, M., Kraus, S., Anugu, N., Davies, C. L., Ennis, J., Gardner, T., Labdon, A., Setterholm, B., ten Brummelaar, T., and Schaefer, G. H., “Multiplicity of northern bright O-type stars with optical long baseline interferometry. Results of the pilot survey,” 672, A6 (Apr. 2023).
[16] De Furio, M., Gardner, T., Monnier, J., Meyer, M. R., Kratter, K., Schaefer, G., Anugu, N., Davies, C. L., Kraus, S., Lanthermann, C., Le Bouquin, J.-B., and Ennis, J., “The Small Separation A-star Companion Population: First Results with CHARA/MIRC-X,” 941, 118 (Dec. 2022).
[17] Torres, G., Schaefer, G. H., Monnier, J. D., Anugu, N., Davies, C. L., Ennis, J., Farrington, C. D., Gardner, T., Klement, R., Kraus, S., Labdon, A., Lanthermann, C., Le Bouquin, J.-B., Setterholm, B. R., and ten Brummelaar, T., “The Orbits and Dynamical Masses of the Castor System,” 941, 8 (Dec. 2022).
[18] Torres, G., Schaefer, G. H., Stefanik, R. P., Latham, D. W., Jones, J., Lanthermann, C., Monnier, J. D., Kraus, S., Anugu, N., ten Brummelaar, T., Chhabra, S., Codron, I., Ennis, J., Gardner, T., Gutierrez, M., Ibrahim, N., Labdon, A., Mortimer, D., and Setterholm, B. R., “Orbits and dynamical masses for the active Hyades multiple system HD 284163,” 527, 8907–8920 (Jan. 2024).
[19] Gardner, T., Monnier, J. D., Fekel, F. C., Le Bouquin, J.-B., Scovera, A., Schaefer, G., Kraus, S., Adams, F. C., Anugu, N., Berger, J.-P., Ten Brummelaar, T., Davies, C. L., Ennis, J., Gies, D. R., Johnson, K. J. C., Kervella, P., Kratter, K. M., Labdon, A., Lanthermann, C., Sahlmann, J., and Setterholm, B. R., “ARMADA. II. Further Detections of Inner Companions to Intermediate-mass Binaries with Microarcsecond Astrometry at CHARA and VLTI,” 164, 184 (Nov. 2022).
[20] Lam, R., Sandquist, E. L., Schaefer, G. H., Farrington, C. D., Monnier, J. D., Anugu, N., Lanthermann, C., Klement, R., Ennis, J., Setterholm, B. R., Gardner, T., Kraus, S., Davies, C. L., and Orosz, J. A., “Precise Age for the Binary Star System 12 Com in the Coma Berenices Cluster,” 166, 29 (July 2023).
[21] Morales, L. M., Sandquist, E. L., Schaefer, G. H., Farrington, C. D., Klement, R., Bedin, L. R., Libralato, M., Malavolta, L., Nardiello, D., Orosz, J. A., Monnier, J. D., Kraus, S., Le Bouquin, J.-B., Anugu, N., ten Brummelaar, T., Davies, C. L., Ennis, J., Gardner, T., and Lanthermann, C., “The Interferometric Binary Cnc in Praesepe: Precise Masses and Age,” 164, 34 (Aug. 2022).
[22] Lester, K. V., Schaefer, G. H., Fekel, F. C., Gies, D. R., Henry, T. J., Jao, W.-C., Paredes, L. A., Hubbard-James, H.-S., Farrington, C. D., Gordon, K. D., Chojnowski, S. D., Monnier, J. D., Kraus, S., Bouquin, J.-B. L., Anugu, N., ten Brummelaar, T., Davies, C. L., Gardner, T., Labdon, A., Lanthermann, C., and Setterholm, B. R., “Visual Orbits of Spectroscopic Binaries with the CHARA Array. IV. HD 61859, HD 89822, HD 109510, and HD 191692,” 164, 228 (Dec. 2022).
[23] Klement, R., Schaefer, G. H., Gies, D. R., Wang, L., Baade, D., Rivinius, T., Gallenne, A., Carciofi, A. C., Monnier, J. D., M ́erand, A., Anugu, N., Kraus, S., Davies, C. L., Lanthermann, C., Gardner, T., Wysocki, P., Ennis, J., Labdon, A., Setterholm, B. R., and Le Bouquin, J.-B., “Interferometric Detections of sdO Companions Orbiting Three Classical Be Stars,” 926, 213 (Feb. 2022).
[24] Klement, R., Baade, D., Rivinius, T., Gies, D. R., Wang, L., Labadie-Bartz, J., Ticiani dos Santos, P., Monnier, J. D., Carciofi, A. C., M ́erand, A., Anugu, N., Schaefer, G. H., Le Bouquin, J.-B., Davies, C. L., Ennis, J., Gardner, T., Kraus, S., Setterholm, B. R., and Labdon, A., “Dynamical Masses of the Primary Be Star and Secondary sdB Star in the Single-lined Binary κ Dra (B6 IIIe),” 940, 86 (Nov. 2022).
[25] Klement, R., Rivinius, T., Gies, D. R., Baade, D., M ́erand, A., Monnier, J. D., Schaefer, G. H., Lanthermann, C., Anugu, N., Kraus, S., and Gardner, T., “The CHARA Array Interferometric Program on the Multiplicity of Classical Be Stars: New Detections and Orbits of Stripped Subdwarf Companions,” 962, 70 (Feb. 2024).
[26] Wang, L., Gies, D. R., Peters, G. J., G ̈otberg, Y., Chojnowski, S. D., Lester, K. V., and Howell, S. B., “The Detection and Characterization of Be+sdO Binaries from HST/STIS FUV Spectroscopy,” 161, 248 (May 2021).
[27] Gies, D. R., Wang, L., and Klement, R., “Gamma Cas Stars as Be+White Dwarf Binary Systems,” 942, L6 (Jan. 2023).
[28] Kishimoto, M., Anderson, M., ten Brummelaar, T., Farrington, C., Antonucci, R., H ̈onig, S., Millour, F., Tristram, K. R. W., Weigelt, G., Sturmann, L., Sturmann, J., Schaefer, G., and Scott, N., “The Dust Sublimation Region of the Type 1 AGN NGC 4151 at a Hundred Microarcsecond Scale as Resolved by the CHARA Array Interferometer,” 940, 28 (Nov. 2022).
[29] Setterholm, B. R., Monnier, J. D., Le Bouquin, J.-B., Anugu, N., Ennis, J., Jocou, L., Ibrahim, N., Kraus, S., Anderson, M. D., Chhabra, S., Codron, I., Farrington, C. D., Flores, B., Gardner, T., Gutierrez, M., Lanthermann, C., Majoinen, O. W., Mortimer, D. J., Schaefer, G., Scott, N. J., ten Brummelaar, T., and Vargas, N. L., “MYSTIC: a high angular resolution K-band imager at CHARA,” Journal of Astronomical Telescopes, Instruments, and Systems 9, 025006 (Apr. 2023)
References
Korolik used CHARA/MIRC-X observations together with time series spectroscopy and photometry to explore the properties of the nearby solar-analog star tau Ceti. They determined an
accurate angular diameter of of 2.019 ± 0.012 mas and a rotation period of 46 ± 4 days.
The combined analysis indicates that we observe the star from an almost pole-on orientation with an estimated rotational inclination of 7° ± 7°. The rotational axis is misaligned withthe surrounding debris disk.
Stellar radii grow with age, so angular diameter measurements of upper main sequence stars offer an important means to estimate stellar age through comparisons with model predictions.
Konstantinova used CHARA measurements of the angular diameter of the magnetically active star RZ Ari to determine the age of this M-giant star. They suggest that the star's fast rotation and strong magnetic dynamo might be due to the engulfment of a planet.
CHARA interferometry has led to the detection of hot exozodiacal dust around A- to G-type stars that is associated with a near-infrared emission excess. Stuber used CHARA Array and other data to study the size distribution of such exozodiacal dust, and they present evidence that large grains (>10 µm) contribute significantly to the flux budget in many cases.
Lanthermann is making a binary star survey of the massive O-type stars in order to document their high multiplicity rate and to discover close but non-interacting systems for orbital mapping and mass determination. Their first paper reports on 29 systems in which they resolved 19 companions in 17 different systems with angular separations between 0.5 and 50 mas.
A binary survey of intermediate-mass A-type stars within 80 pc is underway by Defurio.
Preliminary results from MIRC-X on 27 A-type primaries with estimated masses between 1.44 and 2.49 M☉ and ages of 10-790 Myr, led to the detection of five companions, which yields a companion frequency of ~0.19 over mass ratios of 0.25 - 1.0 and projected separations of 0.288 - 5.481 AU.
Survey 29 Massive O-Stars
Resolved 19 companions
Separations:
0.5 - 50 mas
Multiplicity fraction
fm = 0.59 ± 0.09
Average number of companions
fc = 0.66 ± 0.13
A number of X-ray bright Be stars known as gam Cas analogues are known spectroscopic binaries for which Klement did not detect the companion.
These systems may represent an advanced stage in which the companion is a very faint, proto-white dwarf, so that they are the high-mass extension of cataclysmic variable stars.
Predicted magnitude differences for Be + sdO binaries
The Coma Bernices star cluster is the home of the binary system 12 Com, which consists of a G7 giant and an A3 dwarf at the cluster turnoff. A new precise orbit from CHARA observations made by lam who also obtained radial velocity measurements that lead to masses of 2.64 ± 0.07 M⊙ and 2.10 ± 0.03 M⊙ for the giant and dwarf, respectively.
lam were able to resolve the giant component, and they derived a radius of 9.12 ± 0.12 R⊙ and a cluster age of 533 ± 42 Myr.
Morales used CHARA to investigate eps Cnc, which is a binary star and the brightest member of the Praesepe cluster. They derived radial velocity and interferometric measurements
to determine the component masses, 2.420 ± 0.008 M⊙ and 2.226 ± 0.004 M⊙.
The positions of the components in the HR-diagram yields an age of 637 ± 19 Myr based upon MIST model isochrones.
Kathryn Lester completed her survey of intermediate mass binaries using combined CHARA CLIMB and MIRC-X interferometry and high dispersion spectroscopy to obtain orbits, masses (accurate to ≤ 2\% uncertainty in general), effective temperatures, and radii. Lester reports on results for four spectroscopic binary stars, HD 61859, HD 89822, HD 109510, and HD 191692. The properties of the stars are compared to evolutionary tracks from the MESA and Yale-Yonsei stellar evolution codes, and differences were found for some of the chemically peculiar A-star components.
Disk accretion in YSOs can result from disk instabilities that drive huge flux outbursts.
Bourdarot investigated the kinds of instabilities that occur in the proto-type
object FU~Orionis. They gathered interferometric observations from CHARA MIRC-X and CLIMB
together with those from VLTI PIONIER and GRAVITY and other archival sources to document the
slow decrease in apparent disk size from 1998 to 2020. They find that the temporal variations
are consistent with an outburst caused by a magneto-rotational instability in the disk that
was triggered by a gravitational instability at the outer-edge of the disk ``dead zone.''
Young stars in binary systems are particularly attractive targets for study because individual
masses can often be determined. Zarrilli investigated the single-lined spectroscopic binary star MWC 166A by combining multiple-epoch interferometry from CHARA and VLTI with a large collection of archival radial velocity measurements. This system resides in the CMa OB1 association at a distance of about 1 kpc. Zarrilli find that the primary is a MS B star with a circumstellar disk, while the secondary is a Herbig Be object that is still contracting onto the main sequence. The masses are 12.2 ± 2.2 M⊙ and 4.9 ± 0.5 M⊙, respectively, and the system is about 0.7 Myr old.
Image an exoplanet during transit
There are some 250 known exoplanets with host stars accessible to CHARA.
The new baselines will enable resolution of solar-like stars out to about 70pc in H-band.
Numerical simulations of the transiting hot-Jupiter in HD189773 indicate that the silhouette of the planet can be measured in long baseline observations made during transits.