Nic Scott
NASA ARC
but in atmosphere, turbulent cells limit resolution to
1850s
1890s
1920 - measured Betelgeuse (with Pease)
1956 - HBT effect, correlation b/t coherent photons
detail lost to the atmosphere can be regained through interferometric analysis
Intensity interferometry
1970
Text
a method to obtain diffraction-limited resolution across the full aperture of a large telescope
long exposure
speckles blur
produce Airy pattern
true images are impossible, only centrosymmetric objects can be reconstructed
speckle pattern is the Fourier transform of telescope pupil
autocorrelation of speckles
(in Fourier space)
modulus
(time-averaged intensity)
cross-spectrum, a 2nd order correlation
1974
non-symmetric input
long exposure avg
Labeyrie technique
Knox & Thompson method
mean square of the image transform
modulus of the object transform
autocorrelation of the image transform
phase of the object transform
diffraction-limited image of the object
unambiguous reconstruction of arbitrary shapes but has ambiguity
+
In 1980’s bispectral analysis was found to have higher S/N and be less susceptible to systematic error.
1977-1983
double star simulation
bispectrum modulus
triple correlation
record PSF of object
produce synthetic reference star by shifting the speckle pattern
phase is preserved
Speckle masking/triple correlation theory/bispectral analysis, a 3rd order correlation
deconvolve
true images
http://inspirehep.net/record/823349/plots
1978
record a large series of images
discard instances of poor resolution
combine the remainder through shift-and-add techniques
Can reach
ICCDs
EMCCDs
CMOS (complementary metal–oxide–semiconductor)
EMCMOS
2015: first EMCMOS results reported by Brugière
Text
blue bars are refereed citations to refereed papers
green bars are non-refereed citations to refereed papers
SAO/NASA ADS “Bumblebee” search: ‘‘speckle’’ - ‘‘speckle noise’’
This search returned 1,139 papers with 24,181 total citations
release of EMCCDs
& start of large speckle survey programs.
The following table lists current or recently active major optical speckle imaging programs along with a few IR speckle and lucky imaging instruments and selected other high-resolution programs.
Disclaimer
Text
Source: Wikimedia
|
|
Speckle
Wide Field
Speckle
Wide Field
0.011'' @u
0.026'' @832nm
0.025'' @u
0.060'' @832nm
6.7''
60''
19''
56''
40 total proposals
110.04 total nights
Furlan's previous results applied to planets w/ known masses & radii, analyze the effects of a close stellar companion on planetary density.
The effect of close ~ 0.5” companions of Kepler and K2 planet candidate hosts had on the inferred exoplanet radius distribution.
(2018, in press)
Fulton
mini-neptunes
super-Earths
brightest companion 1''
brightest companion 2''
Shift from 1.8 to 2.2
a~2.8AU
d~270km x 80km
(neck~50-65km)
model: Franck Marchis
Phaethon
Dec 2017 ~ 0.07AU
d~6km
Point source PS
Phaethon power spectrum (resolved)
Seeing-limited
Reconstructed
42''
Two-color wide-field speckle reconstruction
from NESSI
Wide-field speckle techniques for small, urban telescopes, Nicole M. Granucci, Elliott P. Horch, Southern Connecticut State Univ. (USA) talk Tues (coming up next actually)[10701-20]
Text
Text
M13
Reconstructed
Seeing-limited
Abs astrometry residuals
~6-7 mas
4.2 mas
Further improvement possible to obtain ~0.02 pix (~0.4mas)
0.05 mag accuracy on aperture photometry
FWHM ~7pix (0.57'')
FWHM ~4pix (0.3'')
Speckle imaging through a coherent fiber bundle, James W. Davidson, University of Virginia (USA), et al. poster Tues [10701-105]
Brown, R. H. and Twiss, R. Q., Nature 177, 27{29 (Jan. 1956).
Hanbury Brown, R., Davis, J., and Allen, L. R., MNRAS 137, 375 (1967).
Labeyrie, A., A&A 6, 85 (May 1970).
Knox, K. T. and Thompson, B. J., ApJ 193, L45{L48 (Oct. 1974).
Weigelt, G., Scientifc Importance of High Angular Resolution at Infrared and Optical Wavelengths, Ulrich, M. H. and Kjaer, K., eds., 95{114 (1981).
Weigelt, G., Lowell Observatory Bulletin 9, 144{152 (1983).
Weigelt, G. P., Optics Communications 21, 55{59 (Apr. 1977).
Lohmann, A. W., Weigelt, G., and Wirnitzer, B., Appl. Opt. 22, 4028{4037 (Dec. 1983).
Fried, D. L., Journal of the Optical Society of America (1917-1983) 68, 1651–1658 (Dec. 1978).
Horch, E. P., Veillette, D. R., Baena Galle, R., Shah, S. C.,O'Rielly, G. V., and van Altena, W. F., AJ 137, 5057{5067 (June 2009).
Brugière, T., Mayer, F., Fereyre, P., Gu´erin, C., Dominjon, A., and Barbier, R., Nuclear Instruments and Methods in Physics Research A 787, 336–339 (July 2015).
Scott, N. J., Howell, S. B., Horch, E. P., and Everett, M. E., PASP 130, 054502 (May 2018).
Hofmann, K.-H. and Weigelt, G., A&A 278, 328-339 (Oct. 1993).
Law, N. M., Mackay, C. D., and Baldwin, J. E., A&A 446, 739{745 (Feb. 2006).
Tokovinin, A. and Cantarutti, R., PASP 120, 170 (Feb. 2008).
Andor, CCD, EMCCD and ICCDComparions & Minimizing Clock Induced Charge.
Howell, S. B., Everett, M. E., Sherry, W., Horch, E., and Ciardi, D. R., AJ 142, 19 (July 2011).
Furlan, E., Ciardi, D. R., Everett, M. E., Saylors, M., Teske, J. K., Horch, E. P., Howell, S. B., van Belle, G. T., Hirsch, L. A., Gautier, III, T. N., Adams, E. R., Barrado, D., Cartier, K. M. S., Dressing C. D., Dupree, A. K., Gilliland, R. L., Lillo-Box, J., Lucas, P. W., and Wang, J., AJ 153, 71 (Feb. 2017).
Furlan, E. and Howell, S. B., AJ 154, 66 (Aug. 2017).
Teske, J. K., Ciardi, D. R., Howell, S. B., Hirsch, L. A., and Johnson, R. A., ArXiv e-prints (Apr. 2018).
Fulton, B. J., Petigura, E. A., Howard, A. W., Isaacson, H., Marcy, G. W., Cargile, P. A., Hebb, L., Weiss, L. M., Johnson, J. A., Morton, T. D.,Sinuko , E., Cross eld, I. J. M., and Hirsch, L. A., AJ 154, 109 (Sept. 2017).
Hirsch, L. A., Ciardi, D. R., Howard, A. W., Everett, M. E., Furlan, E., Saylors, M., Horch, E. P., Howell, S. B., Teske, J., and Marcy, G. W., AJ 153, 117 (Mar. 2017).
Matson, R. A., Howell, S. B., Horch, E. P., Everett, M. E., ArXiv e-prints (May. 2018)
NPP & internship opportunities: see me for details
Detection percentage as a function of projected angular separation for the 883 nm speckle image of TRAPPIST-1. The curve is the 5σ detection limit from our image convolved with the detection likelihood (see the text). The result eliminates all companions in the blue region at separations of 0.32–17 au for the observed contrast ratios. Numbers on the plot represent the delta magnitude and spectral type limits at the corresponding points. For example, all companions earlier than T7 are eliminated to an inner separation of ∼8 au.
observed
bound (simulated)
line-of-sight (simulated)
K2 binaries detectable with DSSI-
Matson et al. 2018 (submitted)