Topological Aspects of Chern-Simons TQFTs

Ninnat Dangniam

PHYS 523 Quantum Field Theory

16 December 2016

Anyons!

Motivation

  • Abelian - Quantum memory
  • Non-abelian - Quantum computation

Motivation

  • Abelian - Quantum memory
  • Non-abelian - Quantum computation

Manifold and Tangent Bundle

Fiber Bundle

G-Bundle

Gauge Field

\nabla_{\nu} s = \nabla_{\nu} (s^{\mu} e_{\mu})
νs=ν(sμeμ)\nabla_{\nu} s = \nabla_{\nu} (s^{\mu} e_{\mu})
= (\partial_{\nu} s^{\mu} +
=(νsμ+= (\partial_{\nu} s^{\mu} +

Connection 1-Form

A^{\mu}{}_{\nu \rho}
AμνρA^{\mu}{}_{\nu \rho}
s^{\rho})e_{\mu}
sρ)eμs^{\rho})e_{\mu}
\tilde{A}_{\mu} = g A_{\mu} g^{-1} + g \partial_{\mu} g^{-1}
A~μ=gAμg1+gμg1\tilde{A}_{\mu} = g A_{\mu} g^{-1} + g \partial_{\mu} g^{-1}
g = e^{-if}
g=eifg = e^{-if}

U(1) example

\tilde{A}_{\mu} = A_{\mu} + i \partial_{\mu} f
A~μ=Aμ+iμf\tilde{A}_{\mu} = A_{\mu} + i \partial_{\mu} f

Gauge Transformation

Curvature 2-form

F(\mu ,\nu) \equiv \nabla_{\mu} \nabla_{\nu} - \nabla_{\nu} \nabla_{\mu} - \nabla_{[\mu ,\nu]}
F(μ,ν)μννμ[μ,ν]F(\mu ,\nu) \equiv \nabla_{\mu} \nabla_{\nu} - \nabla_{\nu} \nabla_{\mu} - \nabla_{[\mu ,\nu]}
F_{\mu \nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + [A_{\mu},A_{\nu}]
Fμν=μAννAμ+[Aμ,Aν]F_{\mu \nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + [A_{\mu},A_{\nu}]
F = dA + A \wedge A
F=dA+AAF = dA + A \wedge A

Curvature 2-form

  • The exterior derivative d generalizes Div, Grad, Curl
  • The wedge product generalizes the cross product
F = dA + A \wedge A
F=dA+AAF = dA + A \wedge A

Curvature 2-form

u_1 \wedge u_2 \wedge \cdots \wedge u_n = \mathcal{A} [u_1 \otimes u_2 \otimes \cdots \otimes u_n]
u1u2un=A[u1u2un]u_1 \wedge u_2 \wedge \cdots \wedge u_n = \mathcal{A} [u_1 \otimes u_2 \otimes \cdots \otimes u_n]
= \frac{1}{n!} \sum_{\sigma \in S_n} (-1)^{{\text sgn} \sigma} u_{\sigma(1)} \otimes u_{\sigma(2)} \otimes \cdots \otimes u_{\sigma(n)}
=1n!σSn(1)sgnσuσ(1)uσ(2)uσ(n)= \frac{1}{n!} \sum_{\sigma \in S_n} (-1)^{{\text sgn} \sigma} u_{\sigma(1)} \otimes u_{\sigma(2)} \otimes \cdots \otimes u_{\sigma(n)}

Think of wedge product explicitly as tensors

\mathcal{A} \left[ T_{j_1,j_1,...,j_n} \right] = \frac{1}{n!} \epsilon^{j_1,j_1,...,j_n} T_{j_1,j_1,...,j_n}
A[Tj1,j1,...,jn]=1n!ϵj1,j1,...,jnTj1,j1,...,jn\mathcal{A} \left[ T_{j_1,j_1,...,j_n} \right] = \frac{1}{n!} \epsilon^{j_1,j_1,...,j_n} T_{j_1,j_1,...,j_n}
\mathcal{L}_{\text EM} = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
LEM=14FμνFμν\mathcal{L}_{\text EM} = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
{\text Tr} (F \wedge F) ?
Tr(FF)?{\text Tr} (F \wedge F) ?

Theory Without a Metric

Boring theory: 𝛿S vanishes for every A

{\text Tr} (F \wedge F) = d
Tr(FF)=d{\text Tr} (F \wedge F) = d

Chern-Simons form

{\text Tr} (A \wedge dA + \frac{2}{3} A \wedge A \wedge A)
Tr(AdA+23AAA){\text Tr} (A \wedge dA + \frac{2}{3} A \wedge A \wedge A)

Chern-Simons Theory

S_{\text CS} = \frac{k}{4\pi} \int_M {\text Tr} (dA \wedge A + A \wedge A \wedge A)
SCS=k4πMTr(dAA+AAA)S_{\text CS} = \frac{k}{4\pi} \int_M {\text Tr} (dA \wedge A + A \wedge A \wedge A)
S_{\text CS} \mapsto S_{\text CS} + 2\pi
SCSSCS+2πS_{\text CS} \mapsto S_{\text CS} + 2\pi
k
kk
n
nn

Level

Almost gauge invariant!

Holonomy

\nabla_{\gamma'(t)} u = 0
γ(t)u=0\nabla_{\gamma'(t)} u = 0

Holonomy

u(t) =
u(t)=u(t) =
H(\gamma, A)
H(γ,A)H(\gamma, A)
P\exp \left[-\int_0^t d\tau A(\tau) \right]
Pexp[0tdτA(τ)]P\exp \left[-\int_0^t d\tau A(\tau) \right]
u(0)
u(0)u(0)
H(\gamma, A') = g(\gamma(t)) H(\gamma, A) g^{-1}(\gamma(0))
H(γ,A)=g(γ(t))H(γ,A)g1(γ(0))H(\gamma, A') = g(\gamma(t)) H(\gamma, A) g^{-1}(\gamma(0))
W(\gamma_{\text loop},A) = {\text Tr} (H(\gamma_{\text loop}, A))
W(γloop,A)=Tr(H(γloop,A))W(\gamma_{\text loop},A) = {\text Tr} (H(\gamma_{\text loop}, A))

Gauge invariant!

W(\gamma,A) = e^{iq\oint_{\gamma'} d\gamma \cdot A}
W(γ,A)=eiqγdγAW(\gamma,A) = e^{iq\oint_{\gamma'} d\gamma \cdot A}

Abelian Chern-Simons Theory

\langle W(\gamma) \rangle = \frac{ \langle 0| W(\gamma) |0 \rangle }{ \langle 0|0 \rangle }
W(γ)=0W(γ)000\langle W(\gamma) \rangle = \frac{ \langle 0| W(\gamma) |0 \rangle }{ \langle 0|0 \rangle }
\langle W (\gamma) \rangle = \exp \left[ \frac{i \pi}{k} \sum_{j,l} q_j q_l L(\gamma_j,\gamma_k) \right]
W(γ)=exp[iπkj,lqjqlL(γj,γk)]\langle W (\gamma) \rangle = \exp \left[ \frac{i \pi}{k} \sum_{j,l} q_j q_l L(\gamma_j,\gamma_k) \right]
= \frac{\int DA W(\gamma,A) \exp \left( i\int_M A \wedge dA \right)}{\int DA \exp \left( i\int_M A \wedge dA \right)}
=DAW(γ,A)exp(iMAdA)DAexp(iMAdA)= \frac{\int DA W(\gamma,A) \exp \left( i\int_M A \wedge dA \right)}{\int DA \exp \left( i\int_M A \wedge dA \right)}

Abelian Chern-Simons Theory

\langle W (\gamma) \rangle = \exp \left[ \frac{i \pi}{k} \sum_{j,l} q_j q_l L(\gamma_j,\gamma_k) \right]
W(γ)=exp[iπkj,lqjqlL(γj,γk)]\langle W (\gamma) \rangle = \exp \left[ \frac{i \pi}{k} \sum_{j,l} q_j q_l L(\gamma_j,\gamma_k) \right]
\langle W(\gamma) \rangle = \exp \left(\frac{2 i\pi q^2}{k} \right) \langle W(0) \rangle
W(γ)=exp(2iπq2k)W(0)\langle W(\gamma) \rangle = \exp \left(\frac{2 i\pi q^2}{k} \right) \langle W(0) \rangle

Trivial loop

Anyons!

Abelian Chern-Simons Theory

\langle W (\gamma) \rangle = \exp \left[ \frac{i \pi}{k} \sum_{j,l} q_j q_l L(\gamma_j,\gamma_l) \right]
W(γ)=exp[iπkj,lqjqlL(γj,γl)]\langle W (\gamma) \rangle = \exp \left[ \frac{i \pi}{k} \sum_{j,l} q_j q_l L(\gamma_j,\gamma_l) \right]
\langle W(\gamma') \rangle = \exp \left( \frac{i\pi q^2}{k} L(\gamma,\gamma') \right) = e^{\frac{i\pi q^2}{k}} \langle W(0) \rangle
W(γ)=exp(iπq2kL(γ,γ))=eiπq2kW(0)\langle W(\gamma') \rangle = \exp \left( \frac{i\pi q^2}{k} L(\gamma,\gamma') \right) = e^{\frac{i\pi q^2}{k}} \langle W(0) \rangle

Trivial loop

Framing

Abelian Chern-Simons Theory

\theta = \frac{\pi q^2}{k}
θ=πq2k\theta = \frac{\pi q^2}{k}
s = \frac{\theta}{2\pi}
s=θ2πs = \frac{\theta}{2\pi}
{\text spin} = \frac{q^2}{2k}
spin=q22k{\text spin} = \frac{q^2}{2k}
\langle W(\gamma') \rangle = \exp \left( \frac{i\pi q^2}{k} L(\gamma,\gamma') \right) = e^{\frac{i\pi q^2}{k}} \langle W(0) \rangle
W(γ)=exp(iπq2kL(γ,γ))=eiπq2kW(0)\langle W(\gamma') \rangle = \exp \left( \frac{i\pi q^2}{k} L(\gamma,\gamma') \right) = e^{\frac{i\pi q^2}{k}} \langle W(0) \rangle

Trivial loop

Framing

Topological Degeneracy

T_1, T_2
T1,T2T_1, T_2

don't excite the ground state

Topological Degeneracy

T_2^{-1} T_1^{-1} T_2 T_1 = e^{2i\theta}I =
T21T11T2T1=e2iθI=T_2^{-1} T_1^{-1} T_2 T_1 = e^{2i\theta}I =

Topological Degeneracy

T_2 T_1 = e^{2i\theta} T_1 T_2
T2T1=e2iθT1T2T_2 T_1 = e^{2i\theta} T_1 T_2
T_1 (T_2 |x\rangle) = e^{-2i\theta} T_2 T_1 |x\rangle
T1(T2x)=e2iθT2T1xT_1 (T_2 |x\rangle) = e^{-2i\theta} T_2 T_1 |x\rangle
= e^{-i (x + 2\theta)} (T_2 |x\rangle )
=ei(x+2θ)(T2x)= e^{-i (x + 2\theta)} (T_2 |x\rangle )
T_2 |x\rangle = |x+2\theta \rangle
T2x=x+2θT_2 |x\rangle = |x+2\theta \rangle
\frac{2\pi p}{r} = 0,1,2,...,r-1
2πpr=0,1,2,...,r1\frac{2\pi p}{r} = 0,1,2,...,r-1

Quantum Memory

  • John Baez and Javier P. Muniain, Gauge Fields, Knots, and Gravity

  • Jiannis K. Pachos, Introduction to Topological Quantum Computation

  • John Preskill, "Lecture Notes for Physics 229: Quantum Information and Computation"