growth and                           in biofilms

Pablo Bravo

YunkerLab, Georgia Institute of Technology

QBioS 4th year seminar

Vertical 

topographies

Outline

I. Biofilms

  • What are they, and why we should care

II. Vertical growth dynamics

III.Biofilm topographies

  • How to measure vertical growth
  • Behavior and clues
  • Heuristic model
  • Why topographies
  • Characterization
  • Apples to oranges?

Extracellular matrix formed of polysaccharides, DNA, and proteins 

Surface

Interface

Cells

Biofilms are                                                    3D structures

complex surface-attached

cycle

The (expanded) biofilm

  • How do aggregates grow?
  • What are the underlying processes?
  • Simple quantitative model?

Horizontal Growth

Vertical
Growth

Growth and accumulation

Outline

I. Biofilms

II. Vertical growth dynamics

III.Biofilm topographies

  • What are they, and why we should care
  • How to measure vertical growth
  • Behavior and clues
  • Heuristic model
  • Why topographies
  • Characterization
  • Apples to oranges?
  • Multiple light sources in the instrument
  • Super-resolution measurements
  • Non-invasive
  • No preparation needed

\( 0.5 mm\)

0

2

4

6

8

10

\(\Delta z\) (\( \mu m\))

Central region of a vibrio cholerae biofilm

Surface topography + intensity!

White-light interferometry

Using                               to measure

interferometry

biofilm growth

Homeland

Agar

Coffee Ring

Things didn't go quite well the first ~10 attempts

Hours

0

48

                         during biofilm growth

Two regimes

Two regimes in which vertical growth depends                       with the height of the colony

linearly

                                      in the agar?

Nutrient depletion

Agar is not running out of nutrients!

Colonies must be slowing down for a different reason

                                      inside the colony

Nutrient dynamics

\(z\)

\frac{\partial c}{\partial t} = D \cdot \frac{\partial^2 c}{\partial z^2} - \lambda \cdot \frac{c}{k+c}

Diffusion constant

Consumption rate

Monod constant

c(0, t) = c_0 \quad \quad \quad \dot{c}(h, t) = 0

Concentration in the substrate

No flux in the top

Region where cells can grow is finite

\int_0^h \frac{c(z)}{k+c(z)}dz \approx \text{min}(h, L)

                       of a colony saturates once they reach a critical length \(L\)

Total growth

                                for vertical

biofilm growth

Heuristic model

Empirical data + biophysical insight:

\frac{\partial h}{\partial t} = \alpha \cdot \text{min}(h, L) - \beta \cdot h\\

Growth rate

Decay rate

Diffusion length

  • Fits the dynamics across timescales
  • Captures two growth regimes
  • \(D, \lambda, k \rightarrow L\)

                     behavior

Long-time

  • Measure colonies every 2 days
     
  • Equilibrium in maximum height
     
  • Model height prediction:

    \(h_{\text{max}} = \frac{\alpha L}{\beta}\)
     

  • Same behavior, different parameters
     

  • Good agreement even early!

                    in vertical growth

Universality

Experiments across a large cohort of microbes

  • Bacteria and fungi
  • Gram + and -
  • Different shapes
  • Different EPS production

Cool way of getting
                                                   numbers from growth in solid media

biologically relevant

Do the                        make sense?

parameters

\frac{\partial c}{\partial t} = D \cdot \frac{\partial^2 c}{\partial z^2} - \lambda \cdot \frac{c}{k+c}

\(800 \mu  m^2 \cdot s^{-1}\)

\(38 \mu M\)

\(1.3\cdot10^3 \mu M \cdot s ^{-1}\)

Eschericia coli growing in agar -> limited by L-serine

Using literature parameters we obtain

\(L = 14.8 \mu m\)

And using the interface model

\(L = 14.3 \pm 1 \mu m\)

Outline

I. Biofilms

  • What are they, and why we should care

II. Vertical growth dynamics

III.Biofilm topographies

  • How to measure vertical growth
  • Behavior and clues
  • Heuristic model
  • Why topographies
  • Characterization
  • Apples to oranges?

What is                                    ?

Profiles are flat. A few cells in amplitude, over thousands of micrometers!

\(500 \mu m\)

biofilm topography

Using white-light interferometry, we can capture the profiles of a growing colonies for extended periods of time

                                           are different between strains

Staphylococcus aureus

Bacillus cereus

Eschericia coli

  • What is leading to the differences between profiles?
  • How do we characterize the dynamics?

\(2 mm\)

\(8 \mu m\)

Time since inoculation [hours]

\(0\)

\(24\)

\(48\)

Fluctuation dynamics

Fluctuations can 

Aeromonas veronii

Eschericia coli

or

relax

increase

  • Width of perpendicular fluctuations in the height profile:

 

 

  • With a roughness/Hurst scaling exponent \(H\):

     
  • The width saturates at \(l_\text{sat}\), and across the whole sample the width is \(w_\text{sat}\)
w_l(\mathbf{r}, t) = \langle (h (\mathbf{r}, t) - \langle h(\mathbf{r}, t) \rangle_l )^2 \rangle_l^{1/2}

\(w_l(t) \propto l^{H} \)

                        fluctuations

Dervaux, et al. 2014

Martinez-Calvo and Bhattacharjee, et al. 2022

\(H\)

\(l_{\text{sat}}\)

\(w_{\text{sat}}\)

Quantifying

                        across strains

Roughness \(H\), after a period of time, stabilizes at \(H_{\text{steady}} \sim 0.8\)

Roughening

         and

There is high variability between microbes

\(w_{sat}\)

vertical growth

Colonies reach nutrient depletion length \(L\)

And an apparent correlation between vertical growth dynamics and the topography!

Knowing the moment when the colony is growing the fastest, just by looking at                         

fluctuations

Are fluctuations                   ?

\(S(k) [\mu m^4]\)

\(k [\mu m^{-1}]\)

\(10^4\)

\(10^3\)

\(10^2\)

\(10^1\)

Dynamic scaling, a test for self-affinity requires: 

 

\(\nu = 1+2H\)

We do not see observe dynamic scaling. 

It is close but not the same!

scale-free

Testing                       again

self-affinity

We can test self-affinity using the fractal dimension \(D\)

\(D + H = 2\)

\(D + H = n +1\), where \(n\) is the base dimension of the system

Topography dynamics as a consequence of growth through a viscoelastic material:

  1. Reach SA while growth is fast
  2. Relax when the colony is tall, and fluctuations get damped

Acknowledgements

NIH-NIMS

NSF BMAT

Biolocity

Dr. Peter Yunker

Dr. Brian Hammer

Dr. Siu Ling Ng

Dr. Thomas Day

Aawaz Pokhrel

Emma Bingham

Funding

Thanks!

Adam Krueger

Raymond Copeland

Maryam Hejri

Lin Zhao

Chris Zhang

 

Lots to learn about                                         , both from                               and                               

vertical growth

biofilm development

biotopographies

4x speed

10 \( \mu L \) inoculation

11 days

2x speed

 

Some stretch for really long before breaking

Two error messages

1. The deviation in controller X is too large

2. The controller target window has not been reached in target monitoring time

Petite yeast (this time for real)

  • Is this because of the stitching? (~20 stitches shown)
  • Could a setting in the stitching software help?
Strain Media Species Date Comment
JT1080 LB 1.5% Vibrio cholerae 2020-11-10 EPS-
SN503 LB 1.5% Vibrio cholerae 2021-01-11 EPS+
BH1543 LB 1.5% Vibrio cholerae 2021-04-12 EPS++
BGT127 LB 1.5% Aeromonas 2021-06-25
bacillus* LB 1.5% Bacillus subtilis 2021-07-30 Gram +
JT305 LB 1.5% Eschericia Coli 2021-08-27
pyeast* YPD Saccharomyces cerevisiae 2021-09-03 Aerotolerant anaerobe
CC151 (~JT305?) YPD Eschericia Coli 2022-01-21 wt ecoli on different media
pyeast* YPD Saccharomyces cerevisiae 2022-01-28 Aerobic

Growth timelapses

Do we need more/specific combination?

QBioS 4th year seminar

By Pablo Bravo

QBioS 4th year seminar

Discover how white-light interferometry can measure biofilm growth, their 3D structures, dynamics, and topographies. Presentation made for the QBioS 4th year Seminar at GeorgiaTech.

  • 92