Causal Inference

Business Analytics

All BU Questrom Students

Y
D

Income 5 years post grad

Coding Class  (1/0)

\mathbb{E}[Y \vert D]
Y
X

Sample Space

SET A

SET B

(Countable)

(Uncountable)

Y
\mathbb{E}[Y \vert X]

All U.S. Houses

Price

Price

Price

\varepsilon
=
+
Y_i = \mathbb{E}[Y \vert X=X_i] + \varepsilon_i

Price of House

Average Price Given Its Size

Error Term

Y_i = \beta_0 + \beta_1\text{Size}_i + \eta_i

Price of House

Slope

Error Term

Y-intercept

\{(Y_i, X_i)\}_{i=1}^n

Observed

f(\theta, X)

Build & Fit

\mathbb{E}[Y\vert X]

Interest

Setup

Learning From Data

(1) Data

(2) Function Space

Parameter Space

(3) Objective Function

(4) Solver

(Build & Fit)

\varepsilon_i
\eta_i
\hat{\eta}_i
Y
X

All U.S. Houses

Price

Size

\mathbb{E}[Y \vert X]
1
\text{Var}(\bar{X}) = \frac{\text{Var}(X)}{n}
2
\frac{1}{n-1}\sum_{i=1}^n(X_i - \bar{X})^2 \approx \text{Var}(X)
3
\frac{1}{n(n-1)}\sum_{i=1}^n(X_i - \bar{X})^2 \approx \frac{\text{Var}(X)}{n}
\hat{\beta_1}= \hat{\gamma}_1 + \hat{\gamma}_2 * \frac{\text{Cov}(D_i, X_i)}{\text{Var}(D_i)}

Coefficient of Interest

(Single Variable Regression Model)

Coefficient of Interest

(Multivariate Regression Model)

Nuisance Parameter

(Multivariate Regression Model)

Slope Parameter from Regression Control on Treatment Variable