Praharsh Suryadevara
Mathias Casiulis
Stefano Martiniani
Energy as a function of conformational angles of a molecule
\(V(x)\)
\(x\)
\(V(x)\)
\(x\)
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(x_{min}\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(V(x)\)
\(x\)
basin 2
Basin tiling (what we're interested in)
basin 1
basin 3
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
Bidisperse Hertzian soft spheres
$$ V_{ij}(r) =\begin{cases} \frac{\epsilon}{p} \left( 1 - \frac{r}{r_{i} + r_{j}} \right) ^{p} & r < r_{i} + r_{j} \\ 0 & r > r_{i} + r_{j}\end{cases}$$ with \(p\) = 2.5 and packing fraction \(\phi=0.9\)
Lennard Jones
$$ V_{ij}(r) = \epsilon \left( \left( \frac{\sigma}{r} \right) ^{12} - \left( \frac{\sigma}{r} \right)^{6} \right) $$
with \(\epsilon=1\) and \(\sigma=1\)
landscape dimension \(d_l \sim (N\times d)\)
Each color is a basin
Imagine cubic basins in a regular grid
Each color is a basin
Imagine cubic basins in a regular grid
Wales, David. Energy landscapes: Applications to clusters, biomolecules and glasses. Cambridge University Press, 2003.
Optimizers give nearly accurate basins in low dimensions !!
LBFGS
FIRE
Steepest Descent
Rackauckas, Christopher, et, al., Journal of open research software 5.1 (2017).
Local error
Time (s)
CVODE (Best)
QNDF
Adaptive Implicit Runge Kutta
Adaptive Implicit Euler
Better!
Rackauckas, Christopher, et, al., Journal of open research software 5.1 (2017).
Local error
Time (s)
CVODE (Best)
QNDF
Adaptive Implicit Runge Kutta
Adaptive Implicit Euler
\(\times 10^3\)
FIRE
LBFGS
FIRE
CVODE
\( 8 \times \)equilibrum pairwise distance
Global minimum
\(d_l = 33\)
\( 8 \times \)equilibrum pairwise distance
Global minimum
\(d_l = 33\)
$$ V(x) \approx x^T H x $$
Skips unnecessary trajectory information!
CVODE
Mixed Descent
FIRE
LBFGS
LBFGS
Mixed Descent
CVODE
FIRE
Martiniani Lab
Stefano Martiniani
Mathias Casiulis
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
basin 2
Basin Tiling (What we're interested in)
basin 1
basin 3
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
How to get Global Accuracy
\(N\)
\(rtol\)
95 percent accuracy
\( 8 \times \)equilibrum pairwise distance
Glasses
Hierarchical Landscape
Charbonneau, Patrick, et al , Nat Commun 5, 3725 (2014)
\( 8 \times \)equilibrum pairwise distance
\( 8 \times \)equilibrum pairwise distance
Colors not matched!!
\(d\)
$$ N_{buildings} = \frac{D}{\langle\mathcal{d}\rangle} $$