Praharsh Suryadevara
Mathias Casiulis
Stefano Martiniani
Energy as a function of conformational angles of a molecule
\(V(x)\)
\(x\)
\(V(x)\)
\(x\)
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(x_{min}\)
\(V(x)\)
\(x\)
basin 2
Basin tiling (what we're interested in)
basin 1
basin 3
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
Most Volume
Probability of landing inside the basin
Hypercube \(~1000d\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
Momentum-based optimizers (e.g. FIRE)
Newton/Quasi-Newton methods (e.g. LBFGS)
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
Bidisperse Hertzian soft spheres
$$ V_{ij}(r) =\begin{cases} \frac{\epsilon}{p} \left( 1 - \frac{r}{r_{i} + r_{j}} \right) ^{p} & r < r_{i} + r_{j} \\ 0 & r > r_{i} + r_{j}\end{cases}$$ with \(p\) = 2.5 and packing fraction \(\phi=0.9\) unless otherwise specified
landscape dimension \(d_l \sim (N-1)\times d\)
Each color is a basin
Imagine cubic basins in a regular grid
Each color is a basin
Imagine cubic basins in a regular grid
Local error
Time (s)
CVODE (Best)
QNDF
Adaptive Implicit Runge Kutta
Adaptive Implicit Euler
\(\times 10^3\)
FIRE
LBFGS
FIRE
CVODE
Distance from point
CVODE
FIRE
LBFGS
\(P(r) = a x^b \)
Survival
Probability
CVODE
\(d_l = 2046 \)
\(P(r)=e^{-(r/r_0)^b}\)
\(1024\) particles
\(P(r) = a x^b \)
CVODE
\(8\) particles
\(d_l = 14 \)
LBFGS
FIRE
Distance from minimum
Accuracy
Most basin volume
Distance from minimum
Radial Density of Basin
Optimizer accuracy
Density
Martiniani Lab
Stefano Martiniani
Mathias Casiulis
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
$$Z(k) = \int_{\mathbb{R}^N}^{} \mathcal{O}(x) e^{- \frac{1}{2} k \left|x-x_{0}\right|^{2}} dx$$
Partition function
Oracle (1 if inside basin. 0 if outside)
Spring (to control exploration)
$$ F(k) = - log(Z_{k}) $$
Free energy
$$ F(0) - F(k_{\infty}) = \int_{0}^{k_{\infty}} \frac{\partial F}{\partial k} dk = \int_{k_{\infty}}^{0} \langle \left| x-x_{0}\right|^{2} \rangle_{k} dk$$
Log volume (unknown)
Spring free energy
\(N=128\) \(d_l = 254\)
Polydisperse spheres
\(d_l = 32\)
Hypercubic tiling
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
Most volume
Text
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
basin 2
Basin Tiling (What we're interested in)
basin 1
basin 3
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
How to get Global Accuracy
\(N\)
\(rtol\)
95 percent accuracy
\( 8 \times \)equilibrum pairwise distance
\( 8 \times \)equilibrum pairwise distance
\( 8 \times \)equilibrum pairwise distance
Colors not matched!!
CVODE
Mixed Descent
FIRE
LBFGS
LBFGS
Mixed Descent
CVODE
FIRE
\(d\)
$$ N_{buildings} = \frac{D}{\langle\mathcal{d}\rangle} $$