Praharsh Suryadevara
Mathias Casiulis
Stefano Martiniani
\(V(x)\)
\(x\)
\(V(x)\)
\(x\)
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
\(x_0\)
\(x_{min}\)
\(V(x)\)
\(x\)
basin 2
Basin tiling (what we're interested in)
basin 1
basin 3
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
Steepest Descent
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
Newton/Quasi-Newton methods (e.g. LBFGS)
Momentum-based optimizers (e.g. FIRE)
Time
$$ x_{t+\Delta t} = x_t + \Delta t \nabla V(x_t)$$
Gradient Descent/Forward Euler infinitesimal stepsizes
Error
Optimizers accurate for small systems but not benchmarked moderate/large systems
??
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
Optimizers
Forward Euler/Gradient descent
ODE Solvers
Expensive/Infeasible in high dimensions
Faster but accurate Methods?
Newton/Quasi-Newton methods (e.g. LBFGS)
Momentum-based optimizers (e.g. FIRE)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
Momentum-based optimizers (e.g. FIRE)
Newton/Quasi-Newton methods (e.g. LBFGS)
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
Newton/Quasi-Newton methods (e.g. LBFGS)
Momentum-based optimizers (e.g. FIRE)
$$ x_{t+\Delta t} = x_t + \Delta t \nabla V(x_t)$$
Gradient Descent/Forward Euler
Bidisperse Hertzian soft spheres
$$ V_{ij}(r) =\begin{cases} \frac{\epsilon}{p} \left( 1 - \frac{r}{r_{i} + r_{j}} \right) ^{p} & r < r_{i} + r_{j} \\ 0 & r > r_{i} + r_{j}\end{cases}$$ with \(p\) = 2.5 and packing fraction \(\phi> \phi_j\)
landscape dimension \(d_l \sim (N-1)\times d\)
Each color is a basin
Imagine cubic basins in a regular grid
Each color is a basin
Imagine cubic basins in a regular grid
Better
true solution
3 orders of magnitude faster than Implicit Euler at same error
Better
ODE solver solution
Max distance
Average over a 100 initial conditions
CVODE
FIRE
LBFGS
\(d_l \sim 254\)
\(N \sim 128 \)
Not a single sampled point matches
\(V \sim l^d\)
\(log(V) \sim \log(l_1) + \log(l_2) + ...\)
The limiting distribution of \log(V) should go as Normal, if the mean and variance are well behaved and \(l\) isn't drawn from an already stable distribution
\(d_B = \lim_{\epsilon\rightarrow 0} \frac{\log N(\epsilon)}{\log(1/\epsilon)}\)
\(d_b \sim (1.3, 1.8) \)
Bollt, Erik, et al. "Fractal basins as a mechanism for the nimble brain." Scientific Reports 13.1 (2023): 20860.
\(d_B\sim1.98\)
https://sohl-dickstein.github.io/2024/02/12/fractal.html
Ly, Andrew, and Pulin Gong. "Optimization on multifractal loss landscapes explains a diverse range of geometrical and dynamical properties of deep learning." Nature Communications 16.1 (2025): 3252.
\( \frac{d\bm{x_{i}}}{dt} = f(\bm{x_{i}}) + \sigma \sum_{j=1}^{N} \left[ A \right]_{ij} h(\bm{x}_{i}, \bm{x}_j)\)
\(d_{L-BFGS} \sim 1.40\)
\(d_{FIRE} \sim 1.33\)
\(d_{CVODE} \sim 1.10\)
\(\phi=0.86\)
\(d_{L-BFGS} \sim 1.40\)
\(d_{FIRE} \sim 1.33\)
\(d_{CVODE} \sim 1.10\)
\(N=16\) \(d_l \sim 30\)
Casiulis et al. Papers in Physics 15 (2023): 150001
Most Probable: Maximum radial density
Probability of landing inside the basin
Hypercube \(~1000d\)
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
Survival Probability at R: Probability of staying inside basin taking uniform samples at radius R
\(R_{1/2}\)
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
Point lies at a distance \(r\)
Text
\(r\)
Brute force MC misses most of the volume!!
Umbrella sampling: Reconstruct uniform samples from MC walkers at different distances, which can be used to constuct volumes
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
Replica exchange
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
$$Z(k) = \int_{\mathbb{R}^N}^{} \mathcal{O}(x) e^{- \frac{1}{2} k \left|x-x_{0}\right|^{2}} dx$$
Partition function
Oracle (1 if inside basin. 0 if outside)
Spring (to control exploration)
$$ F(k) = - log(Z_{k}) $$
Free energy
$$ F(0) - F(k_{\infty}) = \int_{0}^{k_{\infty}} \frac{\partial F}{\partial k} dk = \int_{k_{\infty}}^{0} \langle \left| x-x_{0}\right|^{2} \rangle_{k} dk$$
Log volume (unknown)
Spring free energy
\(128\) particles
\(d_l = 255 \)
Distance from minimum
Accuracy
Most basin volume
Distance from minimum
Radial Density of Basin
Optimizer accuracy
Density
FIRE
CVODE
Take CVODE samples and minimize with FIRE
\(128\) particles
\(d_l = 255 \)
Distance from minimum
Accuracy
Most basin volume
Distance from minimum
Radial Density of Basin
Optimizer accuracy
Density
FIRE
CVODE
\(F_0 = - \ln V \)
\(d\)
$$ N_{buildings} = \frac{L}{\langle\mathcal{d}\rangle} $$
$$ N_{packings} = \frac{V_{space}}{\langle v_{basin} \rangle} $$
Stable packings are minima of the potential
Martiniani, Stefano, and Mathias Casiulis. "When you can’t count, sample! Computable entropies beyond equilibrium from basin volumes." Papers in Physics 15 (2023).
Martiniani, Stefano, and Mathias Casiulis. "When you can’t count, sample! Computable entropies beyond equilibrium from basin volumes." Papers in Physics 15 (2023).
Stefano Martiniani
Mathias Casiulis
Martiniani Lab
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
Most volume
\(V(x)\)
\(x\)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
basin 2
Basin Tiling (What we're interested in)
basin 1
basin 3
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
How to get Global Accuracy
\(N\)
\(rtol\)
95 percent accuracy
\(N=128\) \(d_l = 254\)
Polydisperse spheres
CVODE
Mixed Descent
FIRE
LBFGS
LBFGS
Mixed Descent
CVODE
FIRE
\(d\)
$$ N_{buildings} = \frac{D}{\langle\mathcal{d}\rangle} $$
\(128\) particles
\(d_l = 14 \)
LBFGS
FIRE
Distance from minimum
Accuracy
Most basin volume
Distance from minimum
Radial Density of Basin
Optimizer accuracy
Density