Praharsh Suryadevara
Thesis Defense
NYU
High-dimensional energy landscapes with multiple minima arise across many fields
Glasses
Stillinger, Frank H. Energy landscapes, inherent structures, and condensed-matter phenomena. Princeton University Press, 2015.
Proteins
Onuchic, José Nelson, and Peter G. Wolynes. "Theory of protein folding." Current opinion in structural biology 14.1 (2004): 70-75
Deep Learning
Bengio, Yoshua, Ian Goodfellow, and Aaron Courville. Deep learning. Vol. 1. Cambridge, MA, USA: MIT press, 2017.
and many more....
\(V(x)\)
\(x\)
\(x_0\)
\(V(x)\)
\(x\)
\(x_0\)
$$ \frac{d\mathbf{X}}{dt} = -\nabla E(\mathbf{X})$$
Steepest Descent ODE
\(V(x)\)
\(x\)
\(x_0\)
$$ \frac{d\mathbf{X}}{dt} = -\nabla E(\mathbf{X})$$
Steepest Descent ODE
\(V(x)\)
\(x\)
\(x_0\)
$$ \frac{d\mathbf{X}}{dt} = -\nabla E(\mathbf{X})$$
Steepest Descent ODE
\(V(x)\)
\(x\)
$$ \frac{d\mathbf{X}}{dt} = -\nabla E(\mathbf{X})$$
Steepest Descent ODE
\(\mathbf{X}_0\)
\(\mathbf{X}_{min}\)
\(V(x)\)
\(x\)
basin 2
Basin tiling (what we're interested in)
basin 1
basin 3
$$ \frac{d\mathbf{X}}{dt} = -\nabla E(\mathbf{X})$$
Steepest Descent ODE
\(V(x)\)
\(x\)
\(\epsilon\)
\(\lambda_i\) are eigenvalues of the Hessian
\(\mathbf{X}_{min}\) is locally stable.
Basins are nonlocal so we can use them to characterize global stability
Krakovská, H., Kuehn, C., & Longo, I. P. (2024). Resilience of dynamical systems. European Journal of Applied Mathematics, 35(1), 155-200.
\[\mathbf{X}'=\mathbf{X}+\mathbf{\epsilon}\]
\[ \frac{d\epsilon}{dt} = -H(\mathbf{X}_{min})\epsilon \]
Linear Stability Analysis
\[\epsilon'_i(t) = \epsilon'_i(0) e^{-\lambda_i t}\]
Initial state sensitivity
Basin Volumes
McDonald, S. W., Grebogi, C., Ott, E., & Yorke, J. A. (1985). Fractal basin boundaries. Physica D: Nonlinear Phenomena, 17(2), 125-153.
Wiley, D. A., Strogatz, S. H., & Girvan, M. (2006). The size of the sync basin. Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(1).
Menck, P. J., Heitzig, J., Marwan, N., & Kurths, J. (2013). How basin stability complements the linear-stability paradigm. Nature physics, 9(2), 89-92.
\(\phi=0.845\)
$$ V_{ij}(r) =\begin{cases} \frac{\epsilon}{p} \left( 1 - \frac{r}{r_{i} + r_{j}} \right) ^{p} & r < r_{i} + r_{j} \\ 0 & r > r_{i} + r_{j}\end{cases}$$ with \(p\) = 2.5 and packing fraction \(\phi> \phi_j\)
\(d_l \sim (N-1)\times d\)
\(\phi=0.9\)
How do you identify a basin
Fractality/initial state sensitivity
Basin Volumes
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
Newton/Quasi-Newton methods (e.g. LBFGS)
Momentum-based optimizers (e.g. FIRE)
Time
$$ x_{t+\Delta t} = x_t + \Delta t \nabla V(x_t)$$
Gradient Descent/Forward Euler infinitesimal stepsizes
Error
Optimizers accurate for small systems but not benchmarked moderate/large systems
??
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
Optimizers
Forward Euler/Gradient descent
ODE Solvers
Expensive/Infeasible in high dimensions
Faster but accurate Methods?
Newton/Quasi-Newton methods (e.g. LBFGS)
Momentum-based optimizers (e.g. FIRE)
$$ \frac{\text{d} x}{\text{d} t} = - \nabla V(x)$$
steepest descent
Momentum-based optimizers (e.g. FIRE)
Newton/Quasi-Newton methods (e.g. LBFGS)
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
If your basin is a bowl it does not matter what path you take
L-BFGS
Forward Euler (Gradient Descent)
FIRE (Modified)
1985: First mentioned use of only an optimizer
Stillinger, F. H., & Weber, T. A. (1985). Computer simulation of local order in condensed phases of silicon. Physical review B, 31(8), 5262-5271.
1982: Inherent structure formalism
Stillinger, F. H., & Weber, T. A. (1982). Hidden structure in liquids. Physical Review A, 25(2), 978.
Chakravarty, C., Debenedetti, P. G., & Stillinger, F. H. (2005). Generating inherent structures of liquids: Comparison of local minimization algorithms. The Journal of chemical physics, 123(20).
2005/2013: Comparison between different optimizers without ground truth/for small systems
Asenjo, D., Stevenson, J. D., Wales, D. J., & Frenkel, D. (2013). Visualizing basins of attraction for different minimization algorithms. The Journal of Physical Chemistry B, 117(42), 12717-12723.
Bidisperse Hertzian soft spheres
$$ V_{ij}(r) =\begin{cases} \frac{\epsilon}{p} \left( 1 - \frac{r}{r_{i} + r_{j}} \right) ^{p} & r < r_{i} + r_{j} \\ 0 & r > r_{i} + r_{j}\end{cases}$$ with \(p\) = 2.5 and packing fraction \(\phi> \phi_j\)
landscape dimension \(d_l \sim (N-1)\times d\)
"This shows that mapping an equilibrium liquid state to an inherent structure is a fully dynamical problem, which becomes uniquely defined only after a specific choice for the minimisation algorithm is
made"
Nishikawa, Y., Ozawa, M., Ikeda, A., Chaudhuri, P., & Berthier, L. (2022). Relaxation dynamics in the energy landscape of glass-forming liquids. Physical Review X, 12(2), 021001.
"Because the process [integration] is
chaotic, changing [algorithm parameters] changes an individual IS
determination"
Charbonneau, P., & Morse, P. K. (2023). Jamming, relaxation, and memory in a minimally structured glass former. Physical Review E, 108(5), 054102.
Bautista, E., & Corwin, E. I. (2025). Numerically Discovered Inherent States are Always Protocol Dependent in Jammed Packings. arXiv preprint arXiv:2508.09284.
"As a result,
it is practically impossible to reliably find inherent states
for systems of more than about 64 particles."
\[\mathbf{X}'=\mathbf{X}+\mathbf{\epsilon}\]
\[ \frac{d\epsilon}{dt} = -H(\mathbf{X}_{min})\epsilon \]
Linear Stability Analysis
\[\epsilon'_i(t) = \epsilon'_i(0) e^{-\lambda_i t}\]
$$ \Delta t < \frac{2}{|\lambda_{\max}|} $$
$$\mathbf{X}_{k+1} = \mathbf{X}_k (1-\lambda \Delta t )$$
$$\mathbf{X}_{k+n} = \mathbf{X}_k (1-\lambda \Delta t )^n$$
Most effort is in the long direction, but step size is constrained by the shortest direction
Forward Euler Update
$$ \Delta t < \frac{2}{|\lambda_{\max}|} $$
$$\mathbf{X}_{k+1} = \mathbf{X}_k (1-\lambda \Delta t )$$
$$\mathbf{X}_{k+n} = \mathbf{X}_k (1-\lambda \Delta t )^n$$
Forward Euler Update
Distribution of \(\lambda_{\max}/\lambda_{\min}\) for \(N=512\) at \(\phi=0.845\)
\[\mathbf{X}'=\mathbf{X}+\mathbf{\epsilon}\]
\[ \frac{d\epsilon}{dt} = -H(\mathbf{X}_{min})\epsilon \]
Linear Stability Analysis
\[\epsilon'_i(t) = \epsilon'_i(0) e^{-\lambda_i t}\]
No stability limit on \(\Delta t\)!! Step size is chosen on accuracy alone
$$\mathbf{X}_{k+1} = \mathbf{X}_k-\lambda \Delta t \mathbf{X}_{k+1}$$
$$ \mathbf{X}_{k+1} =\frac{\mathbf{X}_k}{1 + \lambda \, \Delta t}$$
Better
true solution
3 orders of magnitude faster than Implicit Euler at same error
Better
ODE solver solution
Max distance
Average over a 100 initial conditions
ODE solver solution
Max distance
Average over a 100 initial conditions
Hairer, Ernst, Gerhard Wanner, and Syvert P. Nørsett. Solving ordinary differential equations I: Nonstiff problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.
Stiff equations are equations where certain implicit methods, in particular BDF perform better, usually tremendously better than explicit ones
4x
Each color is a basin
Imagine cubic basins in a regular grid
Each color is a basin
Imagine cubic basins in a regular grid
CVODE
FIRE
LBFGS
\(d_l \sim 254\)
\(N \sim 128 \)
Not a single sampled point matches
\(V \sim l^d\)
\(log(V) \sim \log(l_1) + \log(l_2) + ...\)
The limiting distribution of \log(V) should go as Normal, if the mean and variance are well behaved and \(l\) isn't drawn from an already stable distribution
How do you identify a basin
Fractality/initial state sensitivity
Basin Volumes
Charbonneau, P., & Morse, P. K. (2023). Jamming, relaxation, and memory in a minimally structured glass former. Physical Review E, 108(5), 054102.
(very non-rigorous) claims of chaoticity from sensitivity
Nishikawa, Y., Ozawa, M., Ikeda, A., Chaudhuri, P., & Berthier, L. (2022). Relaxation dynamics in the energy landscape of glass-forming liquids. Physical Review X, 12(2), 021001.
Fractal boundaries
Wales, D. J. (1992). Basins of attraction for stationary points on a potential-energy surface. Journal of the Chemical Society, Faraday Transactions, 88(5), 653-657.
Initial state sensitivity
McDonald, S. W., Grebogi, C., Ott, E., & Yorke, J. A. (1985). Fractal basin boundaries. Physica D: Nonlinear Phenomena, 17(2), 125-153.
Give a fractal dimension for boundaries
\(N=16\) \(d_l \sim 30\)
\(d_B = \lim_{\epsilon\rightarrow 0} \frac{\log N(\epsilon)}{\log(1/\epsilon)}\)
\(d_b \sim (1.3, 1.8) \)
Bollt, Erik, et al. "Fractal basins as a mechanism for the nimble brain." Scientific Reports 13.1 (2023): 20860.
\(d_B\sim1.98\)
https://sohl-dickstein.github.io/2024/02/12/fractal.html
Ly, Andrew, and Pulin Gong. "Optimization on multifractal loss landscapes explains a diverse range of geometrical and dynamical properties of deep learning." Nature Communications 16.1 (2025): 3252.
\( \frac{d\bm{x_{i}}}{dt} = f(\bm{x_{i}}) + \sigma \sum_{j=1}^{N} \left[ A \right]_{ij} h(\bm{x}_{i}, \bm{x}_j)\)
\(d_{L-BFGS} \sim 1.40\)
\(d_{FIRE} \sim 1.33\)
\(d_{CVODE} \sim 1.10\)
\(\phi=0.86\)
Limited by resolution!! Need multiple scales!! Can we do better?
\(d_{L-BFGS} \sim 1.40\)
\(d_{FIRE} \sim 1.33\)
\(d_{CVODE} \sim 1.10\)
Casiulis et al. Papers in Physics 15 (2023): 150001
Most Probable: Maximum radial density
Probability of landing inside the basin
Hypercube \(~1000d\)
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
Survival Probability at R: Probability of staying inside basin taking uniform samples at radius R
fraction of uncertain states
$$ f(R) \sim R^{\alpha}$$
$$ \alpha = D - d $$
\(D\) is dimension of phase space and \(d\) is box counting dimension of boundary
Scales as \(O(N^d)\)
Text
McDonald, S. W., Grebogi, C., Ott, E., & Yorke, J. A. (1985). Fractal basin boundaries. Physica D: Nonlinear Phenomena, 17(2), 125-153.
$$ \alpha = D - d $$
Where \(D\) is the full space dimension, and the \(d\) is the box counting dimension of the boundaries
fraction of uncertain states
$$ f(R) \sim R^{\alpha}$$
$$ \alpha = D - d $$
\(D\) is dimension of phase space and \(d\) is box counting dimension of boundary
Scales as \(O(N^d)\)
Text
McDonald, S. W., Grebogi, C., Ott, E., & Yorke, J. A. (1985). Fractal basin boundaries. Physica D: Nonlinear Phenomena, 17(2), 125-153.
To figure out whether there is a basin boundary in a disc in dimension \(D\) to precision \(\epsilon\), number of points to evaluate scales as \(\mathcal{O}(1/\epsilon^d)\) if we were to discretize the boundary of the disc
fraction of uncertain states
$$ f(R) \sim R^{\alpha}$$
$$ \alpha = D - d $$
\(D\) is dimension of phase space and \(d\) is box counting dimension of boundary
Scales as \(O(N^d)\)
Text
$$ \alpha = D - d $$
Where \(D\) is the full space dimension, and the \(d\) is the fractal dimension of the basin around a random point
with some assumptions about there not being a characteristic length scale
fraction of uncertain states
$$ f(R) \sim R^{\alpha}$$
$$ \alpha = D - d $$
\(D\) is dimension of phase space and \(d\) is box counting dimension of boundary
Scales as \(O(N^d)\)
Text
To estimate \(P_{in}(R)\) with monte carlo to estimate the fraction to precision \(\epsilon\) number of points scale as \(\mathcal{O}(1/\epsilon^2)\)
Predicts
$$ P_{\mathrm{in}}(R) \sim R^{-0.107} $$
1024 particles
\(d_l=2046\)
1024 particles
\(d_l=2046\)
How do you identify a basin
Fractality/initial state sensitivity
Basin Volumes
Basin Stability
Soft sphere packings
Wiley, D. A., Strogatz, S. H., & Girvan, M. (2006). The size of the sync basin. Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(1).
Menck, P. J., Heitzig, J., Marwan, N., & Kurths, J. (2013). How basin stability complements the linear-stability paradigm. Nature physics, 9(2), 89-92.
Uses naive sampling.
Xu, N., Frenkel, D., & Liu, A. J. (2011). Direct determination of the size of basins of attraction of jammed solids. Physical Review Letters, 106(24), 245502.
Asenjo, Daniel, Fabien Paillusson, and Daan Frenkel. "Numerical calculation of granular entropy." Physical review letters 112.9 (2014): 098002.
Martiniani, S., Schrenk, K. J., Stevenson, J. D., Wales, D. J., & Frenkel, D. (2016). Structural analysis of high-dimensional basins of attraction. Physical Review E, 94(3), 031301.
Martiniani, S., Schrenk, K. J., Ramola, K., Chakraborty, B., & Frenkel, D. (2017). Numerical test of the Edwards conjecture shows that all packings are equally probable at jamming. Nature physics, 13(9), 848-851.
Uses optimizers. No guarantees that basins are not "dust-like"
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
$$Z(k) = \int_{\mathbb{R}^N}^{} \mathcal{O}(x) e^{- \frac{1}{2} k \left|x-x_{0}\right|^{2}} dx$$
Partition function
Oracle (1 if inside basin. 0 if outside)
Spring (to control exploration)
$$ F(k) = - log(Z_{k}) $$
Free energy
$$ F(0) - F(k_{\infty}) = \int_{0}^{k_{\infty}} \frac{\partial F}{\partial k} dk = \int_{k_{\infty}}^{0} \langle \left| x-x_{0}\right|^{2} \rangle_{k} dk$$
Log volume (unknown)
Spring free energy
Brute force MC misses most of the volume!!
Reconstruct uniform samples from MC walkers at different distances, which can be used to constuct volumes
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
Replica exchange
\(F_0 = - \ln V \)
\(128\) particles
\(d_l = 254 \)
Distance from minimum
Accuracy
Most basin volume
Distance from minimum
Radial Density of Basin
Optimizer accuracy
Density
FIRE
CVODE
Take CVODE samples and minimize with FIRE
\(128\) particles
\(d_l = 255 \)
Distance from minimum
Accuracy
Most basin volume
Distance from minimum
Radial Density of Basin
Optimizer accuracy
Density
FIRE
CVODE
Casiulis et al. Papers in Physics 15 (2023): 150001-150001.
Point lies at a distance \(r\)
Text
\(r\)
\(R_{1/2}\)
\(128\) particles
\(d_l = 254 \)
$$ N_{packings} = \frac{V_{space}}{\langle v_{basin} \rangle} $$
Stable packings are minima of the potential
Entropy Decomposition
$$S_{\text{liquid}}(T) = S_{\text{conf}}(T) + S_{\text{vib}}(T)$$
One approach: Directly enumerate available configurations \(\Omega\) $$S_{\text{conf}} = k_B \ln \Omega$$
where \(\Omega\) = number of accessible configurations (inherent structures)
$$S_{\text{conf}} = 0 \implies \Omega = 1$$
Mapping inherent structures is important
Stefano Martiniani
Mathias Casiulis
Martiniani Lab
How to get Global Accuracy
\(N\)
\(rtol\)
95 percent accuracy
\(N=128\) \(d_l = 254\)
Polydisperse spheres
CVODE
Mixed Descent
FIRE
LBFGS
LBFGS
Mixed Descent
CVODE
FIRE
\(d\)
$$ N_{buildings} = \frac{D}{\langle\mathcal{d}\rangle} $$
\(128\) particles
\(d_l = 14 \)
LBFGS
FIRE
Distance from minimum
Accuracy
Most basin volume
Distance from minimum
Radial Density of Basin
Optimizer accuracy
Density