Justin Dressel
Lucas Burns, Lorenzo Catani
Tomas Gonda, Thomas Galley
New Directions in Function Theory:
From Complex to Hypercomplex to Non-Commutative
November 21-26, 2019, Chapman U, Orange CA
The seeming inability to predefine values of observed quantities.
The dependence of observed values on the specific context of how they are to be measured.
Follows from a degeneracy of operational description: a single operational description may correspond to multiple physical situations => information about any physical distinction is inaccessible operationally
Peres-Mermin Square
Blasiak, DOI:10.1016/j.aop.2014.10.016 |
Suppose the corners of the tetrahedron at right are physically distinct states. Any operationally measurable probabilistic mixture uniquely corresponds to a point inside the tetrahedron.
The tetrahedron inscribes a cube, so projecting the tetrahedron to a lower dimension produces a square. The corners of the square still correspond to the original physically distinct states. However, now the interior points can correspond to distinct physical mixtures.
This erasure model works for finite dimensional probabilistic models.
Can we construct a truly quantum probabilistic space (like the qubit below) in a similar manner from a larger space such that the contextuality in the quantum setting arises explicitly from information erasure?
Idea : Express known quantum physics (like Dirac electron spin) using algebra, then the erasure that causes contextuality manifests as an algebraic quotient
The physically relevant algebra is the Clifford algebra of spacetime, and contains all relativistic physics (e.g., EM, Dirac theory).
Minkowski Space \(\mathcal{M}_{1,3}(\mathbb{R})\) :
Minkowski metric
(symmetric bilinear form)
Algebraic Axioms: \(a,b,c\in\mathcal{M}_{1,3}(\mathbb{R})\)
Axioms constructively define Clifford algebra \( \text{Cl}_{1,3}(\mathbb{R}) \)
Symmetric part of product encodes metric:
Anti-symmetric part is Grassman wedge product:
(others zero)
Grade
0
1
2
3
4
Bivector Planes (of rotation):
3 hyperbolic | 3 elliptic
Vector Lines (of translation):
1 timelike | 3 spacelike
Scalar Points
Pseudovector Volumes:
1 spacelike | 3 timelike
Pseudoscalar 4-Volumes
Multivector: \( M = \langle M \rangle_0 + \langle M \rangle_1 + \langle M \rangle_2 + \langle M \rangle_3 + \langle M \rangle_4 \)
0
1
2
3
(Spacetime-aware "imaginary unit" is the unit pseudoscalar: \(I^2 = -1\))
(commutes with even grade, anti-commutes with odd grade)
4
Relative 3D space embedded as even-graded subspace: \( \text{Cl}_{3,0}(\mathbb{R}) \)
(Observed spatial directions in reference frame)
(Space axis dragged along temporal worldline)
Note duality transformation of left multiplication by \(-I\) : Hodge star operation
Multivector: \( M = [\alpha + (v_0 + \vec{v})\gamma_0 + \vec{A}] + I[\vec{B} + (w_0 + \vec{w})\gamma_0 + \beta] \)
Quaternions embedded as next even-graded subspace: \( \text{Cl}_{0,2}(\mathbb{R}) \)
Complex numbers embedded as next even-graded subspace: \( \text{Cl}_{0,1}(\mathbb{R}) \)
Proper Form of Multivector:
\( M = \alpha + v + \mathbf{F} + Iw + I\beta = (\alpha + I\beta) + (v + Iw) + \mathbf{F} \)
Relative Frame Form of Multivector:
\( M = \alpha + (v_0 + \vec{v})\gamma_0 + (\vec{A} + I\vec{B}) + I(w_0 + \vec{w})\gamma_0 + I\beta \)
Tensor Components:
complex scalar
complex vector
bivector
scalar
polar paravector
polar vector
axial vector
axial paravector
pseudoscalar
4-vector
scalar
bivector
pseudovector
pseudoscalar
4-vector components, or a scalar and a relative 3-vector
rank-2 antisymmetric tensor components, or a pair of 3-vectors (one polar, one axial)
Multivector field: (in tangent algebra at point \(x\) of spacetime manifold)
\( M(x) = \alpha(x) + v(x) + \mathbf{F}(x) + Iw(x) + I\beta(x) \)
Vector derivative (Dirac operator):
\( \displaystyle \vec{\nabla} \equiv \sum_k \vec{\sigma}^k \frac{\partial}{\partial x^k} \) ; \( \vec{\nabla}\vec{v} = \vec{\nabla}\cdot\vec{v} + \vec{\nabla} \wedge \vec{v} = \vec{\nabla}\cdot\vec{v} + (\vec{\nabla}\times \vec{v})I \) (3-gradient, contains divergence and curl)
\(\nabla^2 = \nabla\gamma_0^2\nabla = (\partial_{ct} - \vec{\nabla})(\partial_{ct} + \vec{\nabla}) = \partial^2_{ct} - \vec{\nabla}\cdot\vec{\nabla} = \Box \) (d'Alembertian)
electric charge
density and current
This is Maxwell's Equation
Electromagnetic field bivector:
Same form as complex (Riemann-Silberstein) 3-vector
Electromagnetic source complex vector:
magnetic charge
density and current
Contains all of the usual 3D Maxwell's Equations, permitting both electric and magnetic charges
JD, et al. Physics Reports 589 1-71 (2015)
To move to quantum mechanics, we must understand the basic quantum objects: the spinors that obey the Dirac equation, and their associated simplifications, the Pauli spinors and Schrodinger wavefunctions
Choice of Lorentz Frame
Choice of Spatial Reference within a particular Lorentz Frame
For the simplest case of "nonrelativistic spin", the relevant idempotent is \(\epsilon_2\)
Hiley, Callaghan, arXiv:1011.4033
\( \displaystyle \epsilon_1 = \frac{1 + \gamma_0}{2} \) \( \epsilon_1 = \gamma_0 \, \epsilon_1 \)
A left ideal based on \( \epsilon_1 \) reduces the 16-dimensional algebra to an 8-component (Dirac) spinor, equivalent to 4 complex components:
The corresponding right ideal is the adjoint spinor:
Their product is the Dirac spinor inner product:
The Dirac spinor can be understood as two quaternions, each equivalent to a Pauli spinor:
\( \Psi \epsilon_1 = [\alpha + \vec{A} + I(\beta + \vec{B})] \epsilon_1 \leftrightarrow \Psi \)
\( \epsilon_1 \tilde{\Psi} = \epsilon_1 [\alpha - \vec{A} + I(\beta - \vec{B})] \leftrightarrow \bar{\Psi} \)
\( \epsilon_1 \tilde{\Psi}\Psi \epsilon_1 = [|\alpha|^2 - |\vec{A}|^2 - |\beta|^2 + |\vec{B}|^2]\epsilon_1 \leftrightarrow \bar{\Psi} \Psi \)
\( \Psi \epsilon_1 = [(\alpha + I\vec{B}) + I(\beta - I\vec{A})] \epsilon_1 \\ \qquad = [\psi + I\phi]\epsilon_1 \leftrightarrow \begin{pmatrix}|\psi \rangle \\ |\phi \rangle \end{pmatrix} \)
\( \epsilon_1 \tilde{\Psi}\Psi \epsilon_1 \leftrightarrow \langle \psi | \psi \rangle - \langle \phi | \phi \rangle \)
\( \displaystyle \epsilon_2 = \frac{1 + \vec{\sigma}_3}{2} \) \( \epsilon_2 = \vec{\sigma}_3 \, \epsilon_2 \) \( \displaystyle \epsilon_1 = \frac{(1-\gamma_3)\epsilon_2(1 + \gamma_3)}{2} = \frac{(1 + \gamma_0)\epsilon_2(1 + \gamma_0)}{2}\)
An equivalent left ideal based on \( \epsilon_2 \) directly isolates the relevant Pauli spinors:
\( \Psi \epsilon_2 = [(\alpha + I\vec{B}) + (v_0 + I\vec{w})\gamma_0] \epsilon_2 = [\psi + \phi\gamma_0]\epsilon_2 \)
\( \psi\epsilon_2 = [\alpha + I\vec{B}]\epsilon_2 = [(\alpha + B_3 I) + (B_2 - B_1 I) I\vec{\sigma}_2] \epsilon_2 \)
\(\epsilon_2 \leftrightarrow |0\rangle \)
\( I\vec{\sigma}_2\epsilon_2 \leftrightarrow i\hat{\sigma}_2|0\rangle = |1\rangle \)
\( \psi\epsilon_2 = (\alpha + I\vec{B})\epsilon_2 \leftrightarrow (\alpha + B_3 I)|0\rangle + (B_2 - B_1 I)|1\rangle = |\psi\rangle \)
For nonrelativistic cases, the first Pauli spinor is sufficient, and produces a spin qubit:
Left ideal \(\leftrightarrow\) Pauli Spinors/Kets
Central ideal \(\leftrightarrow\) Operators
\(\epsilon_2 \leftrightarrow |0\rangle\langle 0 | \)
\( (I\vec{\sigma}_2)\epsilon_2(-I\vec{\sigma}_2) \leftrightarrow |1\rangle\langle 1 | \)
\( \psi\epsilon_2\tilde{\psi} \leftrightarrow |\psi \rangle\langle \psi | \)
Notably an entangled state can be understood directly as a product of correlated idempotents that identify spin axes of both particles
Thank you!