FESTIM: overview of hydrogen transport simulation capabilities

Remi Delaporte-Mathurin and FESTIM contributors

User inputs

  • Material properties
  • Trap properties
  • Geometry
  • Boundary conditions
  • Initial conditions
  •            ...
TT
T

FESTIM

Outputs

  • H concentration fields c(x,t)c(x,t)
  • Temperature field T(x,t)T(x,t)
  • surface fluxes
  • inventories
  • average concentration
  •              ...

Heat transfer model

Hydrogen transport model(s)

πŸ“ˆ5 years of development

πŸ“‘14+ publications

πŸ—£οΈ130+ citations

πŸ§‘β€πŸ’»23+ contributors

πŸ›οΈ27+ institutions using the code

πŸ§‘β€πŸ’»80+ Slack members

⭐~100 stars on GitHub

πŸ§‘β€πŸ’»4 user workshops

FESTIM in numbers

βœ…100% open-source

Source code: github.com/festim-dev/FESTIM

Tutorials: github.com/festim-dev/FESTIM-workshop

Documentation: festim.readthedocs.io

FESTIM is verified & validated

  • Validated against TDS, permeation experiments...
     
  • Verified against analytical solutions in many different problems
     
  • New V&V online book

festim-vv-report.readthedocs.io

 

  • 19 V&V cases in total (more to come)

Remi Delaporte-Mathurin and Jair Santana, FESTIM V&V Book, 2024, https://dspace.mit.edu/handle/1721.1/156690.

FESTIM from mesoscale to reactor scale

Gas driven permeation

Jleft=Kd Pβˆ’Kr c2J_\mathrm{left} = K_d \ P - K_r \ c^2
J_\mathrm{left} = K_d \ P - K_r \ c^2
Jright=βˆ’Kr c2J_\mathrm{right} = - K_r \ c^2
J_\mathrm{right} = - K_r \ c^2

Surface limited regime

Bulk limited regime

Transition to bulk limited as the permeation number W W increases

High H pressure

Low H pressure

Permeation flux

c=KH Pup c = K_H \ P_\mathrm{up}

c=0 c = 0

Permeation through the crucible wall

FLiBe

2D permeation through molten salts

flux=2Ο€ βˆ«0Rr Dβˆ‡c β‹…n dr\mathrm{flux} = 2 \pi \ \int_0^R r \ D \nabla c \ \cdot \mathbf{n} \ dr
\mathrm{flux} = 2 \pi \ \int_0^R r \ D \nabla c \ \cdot \mathbf{n} \ dr

HYPERION permeation rig

Permeation barriers

No barrier

with barrier

Permeation barrier

Substrate

High H pressure

Low H pressure

Permeation flux

Ongoing tritium permeation barriers development project at MIT

Conservation of chemical potential

cβˆ’KSβˆ’=c+KS+\frac{c^-}{K_S^-} = \frac{c^+}{K_S^+}
\frac{c^-}{K_S^-} = \frac{c^+}{K_S^+}

TDS analysis: neutron damage

dndt=Ξ¦ K (1βˆ’nnmax)βˆ’A n\frac{d n}{dt} = \Phi \ K \ (1 - \frac{n}{n_\mathrm{max}}) - A \ n
\frac{d n}{dt} = \Phi \ K \ (1 - \frac{n}{n_\mathrm{max}}) - A \ n
  • New proposed model for neutron-induced trap creation
     
  • Parameterised on TDS data (self-damaged W)

TDS analysis: neutron damage

  • Model was used to simulate inventory evolution in PFCs
     
  • Neglecting neutron traps could potentially underestimate inventories by several orders of magnitude after 1 FPY
     
  • Need similar studies for structural materials!

TDS analysis: codeposits

  • Simulation of W codeposited layers
     
  • Influence of partial pressure
     
  • 10 different traps!

Kinetic surface model

Kinetic surface model

  • D in damaged W (S. Markelj JNM 2016)
     
  • Comparison with NRA profiles

Kinetic surface model

  • H in oxidised W (A. Dunand et al 2022 Nucl. Fusion)
     
  • Comparison with TDS spectra

Kinetic surface model

  • H in Ti (Hirooka et al 1981 JNM)
     
  • Validation at 5 temperatures

H content (H/Ti)

Component scale modelling & multiphysics

Influence of ELMs on retention

  • 1D model of a ITER monoblock
     
  • Transient heat transfer simulation
     
  • Varying surface heat flux

Metal Foil Pumps for DIR

  • H is implanted in the first 10 nm 10 \ \mathrm{nm}
  • Super-permeation regime is attained at high recombination energy (upstream surface)
  • Source code

Benedikt & Day, (2017) Fusion Engineering and Design

Retention studies

  • Delaporte-Mathurin et al 2024 International Journal of Hydrogen Energy 63 786–802
  • Delaporte-Mathurin et al 2024 Nucl. Fusion 64 026003
  • ITER plasma facing components
     
  • Transient estimation of tritium retention

Retention (T/m3)

Detritiation studies

Breeding Blanket modelling

  • DEMO WCLL
  • Complex 3D geometry
  • Coupled to fluid dynamics
  • Tritium generation in the LiPb volume (computed from neutronics)

Tritium extraction system

  • Permeation Against Vacuum
  • Complex 3D geometry
  • Coupled with fluid dynamics
  • Tritium extraction from permeable membranes

MIT tritium breeding experiment

Velocity

Temperature

Tritium concentration

For more details on experiment: Delaporte-Mathurin et al, Advancing Tritium Self-Sufficiency in Fusion Power Plants: Insights from the BABY Experiment  (under review in Nucl. Fusion)

β‘  neutrons are generated

 

β‘‘ tritium is created from nuclear reactions

 

β‘’ tritium is transported in the salt

 

β‘£ tritium is released into the gas phase

 

β‘€ tritium is collected and counted

BABY breeding experiment

Towards FESTIM2

  • Rewrite of FESTIM with FEniCSx
  • Improved performances
  • New physics and features

Spherical cavity trapping

see Zibrov and Schmid, NME, 2024

for complete description

  • Implementation in FESTIM of the spherical cavity trapping model developed by Zibrov and Schmid
  • Custom trapping equations
  • Smooth implementation in FESTIM

Anisotropy

  • Anisotropic materials can be simulated with very few modifications
  • Composites
  • Anisotropic microstructures
D=[Dxx00Dyy]D = \begin{bmatrix} D_{xx} & 0\\ 0 & D_{yy} \end{bmatrix}
D = \begin{bmatrix} D_{xx} & 0\\ 0 & D_{yy} \end{bmatrix}
H+[   ]trap p⟡⟢k [H]trap\mathrm{H} + [\ \ \ ]_\mathrm{trap} \ \substack{p \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k} \ [\mathrm{H}]_\mathrm{trap}
\mathrm{H} + [\ \ \ ]_\mathrm{trap} \ \substack{p \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k} \ [\mathrm{H}]_\mathrm{trap}
D+[   ]trap p⟡⟢k [D]trap\mathrm{D} + [\ \ \ ]_\mathrm{trap} \ \substack{p \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k} \ [\mathrm{D}]_\mathrm{trap}
\mathrm{D} + [\ \ \ ]_\mathrm{trap} \ \substack{p \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k} \ [\mathrm{D}]_\mathrm{trap}
D+[H]trap kswap⟡⟢kswap [D]trap+H\mathrm{D} + [\mathrm{H}]_\mathrm{trap} \ \substack{k_\mathrm{swap} \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1.2em] k_\mathrm{swap}} \ [\mathrm{D}]_\mathrm{trap} + \mathrm{H}
\mathrm{D} + [\mathrm{H}]_\mathrm{trap} \ \substack{k_\mathrm{swap} \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1.2em] k_\mathrm{swap}} \ [\mathrm{D}]_\mathrm{trap} + \mathrm{H}

same underlying equations!

Can be represented by festim.Reaction

Isotope swapping

Trapping reactions

Swapping reaction

Isotope swapping

my_model.species = [
    mobile_H,
    mobile_D,
    trapped_H,
    trapped_D,
]

my_model.reactions = [
    F.Reaction(
        k_0=k_0,
        E_k=0.39,
        p_0=1e13,
        E_p=1.2,
        reactant1=mobile_H,
        reactant2=empty_trap,
        product=trapped_H,
        volume=my_subdomain,
    ),
    F.Reaction(
        k_0=k_0,
        E_k=0.39,
        p_0=1e13,
        E_p=1.2,
        reactant1=mobile_D,
        reactant2=empty_trap,
        product=trapped_D,
        volume=my_subdomain,
    ),
    F.Reaction(
        k_0=k_0,
        E_k=0.1,
        p_0=k_0,
        E_p=0.1,
        reactant1=mobile_H,
        reactant2=trapped_D,
        product=[mobile_D, trapped_H],
        volume=my_subdomain,
    ),
]

Usual trapping reactions

Swapping reaction

4 species are defined

Multi-isotope transport and multi-level trapping

  • 2 isotopes, 1 trap (2 levels)
  • 7 different species
  • 6 reactions
H+[   ] p1⟡⟢k1 [H1D0]\mathrm{H} + [\ \ \ ] \ \substack{p_1 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_1} \ [\mathrm{H}_1\mathrm{D}_0]
\mathrm{H} + [\ \ \ ] \ \substack{p_1 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_1} \ [\mathrm{H}_1\mathrm{D}_0]
H+[H1D0] p2⟡⟢k2 [H2D0]\mathrm{H} + [\mathrm{H}_1\mathrm{D}_0] \ \substack{p_2 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_2} \ [\mathrm{H}_2\mathrm{D}_0]
\mathrm{H} + [\mathrm{H}_1\mathrm{D}_0] \ \substack{p_2 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_2} \ [\mathrm{H}_2\mathrm{D}_0]
D+[   ] p3⟡⟢k3 [H0D1]\mathrm{D} + [\ \ \ ] \ \substack{p_3 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_3} \ [\mathrm{H}_0\mathrm{D}_1]
\mathrm{D} + [\ \ \ ] \ \substack{p_3 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_3} \ [\mathrm{H}_0\mathrm{D}_1]
D+[H0D1] p4⟡⟢k4 [H0D2]\mathrm{D} + [\mathrm{H}_0\mathrm{D}_1] \ \substack{p_4 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_4} \ [\mathrm{H}_0\mathrm{D}_2]
\mathrm{D} + [\mathrm{H}_0\mathrm{D}_1] \ \substack{p_4 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_4} \ [\mathrm{H}_0\mathrm{D}_2]
H+[H0D1] p5⟡⟢k5 [H1D1]\mathrm{H} + [\mathrm{H}_0\mathrm{D}_1] \ \substack{p_5 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_5} \ [\mathrm{H}_1\mathrm{D}_1]
\mathrm{H} + [\mathrm{H}_0\mathrm{D}_1] \ \substack{p_5 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_5} \ [\mathrm{H}_1\mathrm{D}_1]
D+[H1D0] p6⟡⟢k6 [H1D1]\mathrm{D} + [\mathrm{H}_1\mathrm{D}_0] \ \substack{p_6 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_6} \ [\mathrm{H}_1\mathrm{D}_1]
\mathrm{D} + [\mathrm{H}_1\mathrm{D}_0] \ \substack{p_6 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_6} \ [\mathrm{H}_1\mathrm{D}_1]

βœ…Mixed domain can streamline multiphysics coupling

 

❌Some methods do not work for dissimilar materials (Henry vs Sieverts)

FESTIM 2 is much faster

3-30x

faster

HISP project: coupling FESTIM to plasma codes

RISP pulse

ITER FW divided in 60 bins

Data from DINA

Goal: find the best strategy for minimising ITER T inventory

HISP project: coupling FESTIM to plasma codes

10 DT FP pulses

ICWC + RISP

GDC

Simulation time:
~ 60 s per bin (~ hour full reactor)

HISP project: coupling FESTIM to plasma codes

  • Multi isotopes
     
  • Parametrisation for W, B, SS
     
  • Testing different scenarios for detritiation in ITER
     
  • Flexible enough to be reactor-and plasma code-agnostic
     
  • Open-source development
    github.com/kaelyndunnell/hisp

Take aways

πŸš€FESTIM is extremely versatile, from simple to complex cases, from small scale to large scale.

 

πŸ”“FESTIM is accessible to everyone. FESTIM2 is already usable now and will soon be released as alpha

 

🫡We - the festim developers - want to work with you - potential users - to have it benefit your work.