Rémi Delaporte-Mathurin
July 6, 2022
UK Atomic Energy Authority (2017)
CEA French Atomic Agency (2018)
PhD CEA - LSPM (2019 - Oct 2022)
Bubbles
Tungsten fuzz
Thermo-mechanical properties
Tritium production
Hydrogen transport
Helium clustering (or emission)
Trap mutation
He1
He2
He4
He3
V1He7
V1He8
V1He9
V1He10
Trap mutation
or
self-trapping
3-species model:
Rate constants:
N-species model:
Diffusion coefficients
Capture radii
Diffusion
Production
Reaction
Binding energy
∂t∂c1=∇⋅(D1∇c1)+P1−2k1,1+c12−i=2∑∞k1,i+c1ci
⋮
∂t∂ci=∇⋅(Di∇ci)−k1,i+c1ci+k1,i−1+c1ci−1
⋮
∂t∂cN= −k1,N+c1cN +k1,N−1+c1cN−1
∂t∂cN+1= −k1,N+1+c1cN+1 +k1,N+c1cN
∂t∂cN+2= −k1,N+2+c1cN+2 +k1,N+1+c1cN+1
⋮
💪
∂t∂c1=∇⋅(D1∇c1)+P1−2k1,1+c12−i=2∑∞k1,i+c1ci
⋮
∂t∂ci=∇⋅(Di∇ci)−k1,i+c1ci+k1,i−1+c1ci−1
⋮
∂t∂cN+1= −k1,N+1+c1cN+1 +k1,N+c1cN
∂t∂cN+2= −k1,N+2+c1cN+2 +k1,N+1+c1cN+1
∂t∂cN+3= −k1,N+3+c1cN+3 +k1,N+2+c1cN+2
⋮
💪
∂t∂c1=∇⋅(D1∇c1)+P1−2k1,1+c12−i=2∑∞k1,i+c1ci
⋮
∂t∂ci=∇⋅(Di∇ci)−k1,i+c1ci+k1,i−1+c1ci−1
⋮
i=N+1∑∞∂t∂ci=k1,N+c1cN
💪
∂t∂c1=∇⋅(D1∇c1)+P1−2k1,1+c12−i=2∑∞k1,i+c1ci
⋮
∂t∂ci=∇⋅(Di∇ci)−k1,i+c1ci+k1,i−1+c1ci−1
⋮
∂t∂cb=k1,N+c1cN
cb=i=N+1∑∞ci : bubble concentration
💪
∂t∂c1=∇⋅(D1∇c1)+P1−2k1,1+c12−i=2∑Nk1,i+c1ci−i=N+1∑∞ki,1+cic1
⋮
∂t∂ci=∇⋅(Di∇ci)−k1,i+c1ci+k1,i−1+c1ci−1
⋮
∂t∂cb=k1,N+c1cN
cb=i=N+1∑∞ci : bubble concentration
💪
∂t∂c1=∇⋅(D1∇c1)+P1−2k1,1+c12−i=2∑Nk1,i+c1ci−⟨kb+⟩c1cb
⋮
∂t∂ci=∇⋅(Di∇ci)−k1,i+c1ci+k1,i−1+c1ci−1
⋮
∂t∂cb=k1,N+c1cN
cb=i=N+1∑∞ci : bubble concentration
⟨kb+⟩=(i=N+1∑∞ki,1+ci)/cb : average clustering rate in bubbles
💪
cb=i=N+1∑∞ci : bubble concentration
⟨kb+⟩=(i=N+1∑∞ki,1+ci)/cb
=(i=N+1∑∞4πD1(r1+ri)ci)/cb
💪
average clustering rate in bubbles
cb=i=N+1∑∞ci : bubble concentration
⟨rb⟩=(i=N+1∑∞rici)/cb : average bubble radius
⟨kb+⟩=(i=N+1∑∞ki,1+ci)/cb
=(i=N+1∑∞4πD1(r1+ri)ci)/cb
=4πD1(r1+⟨rb⟩)
💪
average clustering rate in bubbles
ri=rHe0V1+(4π32a03nV,i)1/3−(4π32a03)1/3
💪
cb=i=N+1∑∞ci : bubble concentration
⟨kb+⟩=4πD1(r1+⟨rb⟩) : average clustering rate in bubbles
⟨rb⟩=(i=N+1∑∞rici)/cb : average bubble radius
ri=rHe0V1+(4π32a034i)1/3−(4π32a03)1/3
nV,i=i/4 : 4 He per vacancy
💪
cb=i=N+1∑∞ci : bubble concentration
⟨kb+⟩=4πD1(r1+⟨rb⟩) : average clustering rate in bubbles
⟨rb⟩=(i=N+1∑∞rici)/cb : average bubble radius
cb=i=N+1∑∞ci : bubble concentration
⟨kb+⟩=4πD1(r1+⟨rb⟩) : average clustering rate in bubbles
⟨rb⟩=(i=N+1∑∞rici)/cb : average bubble radius
⟨ib⟩=(i=N+1∑∞ici)/cb : average He content in bubbles
nV,i=i/4 : 4 He per vacancy
💪
⟨rb⟩=rHe0V1+(4π32a034⟨ib⟩)1/3−(4π32a03)1/3
ri=rHe0V1+(4π32a034i)1/3−(4π32a03)1/3
⟨rb⟩=rHe0V1+(4π32a034⟨ib⟩)1/3−(4π32a03)1/3
cbi=N+1∑∞i1/3ci ≈(i=N+1∑∞ici /cb)1/3=⟨ib⟩1/3
When ci has a narrow gaussian distribution (ie. σ/μ≪1 )
cb=i=N+1∑∞ci : bubble concentration
⟨kb+⟩=4πD1(r1+⟨rb⟩) : average clustering rate in bubbles
⟨ib⟩=(i=N+1∑∞ici)/cb : average He content in bubbles
⟨ib⟩=(i=N+1∑∞ici)/cb
💪
⟨ib⟩=(i=N+1∑∞ici)/cb
⟨ib⟩cb= i=N+1∑∞ici
💪
cb=i=N+1∑∞ci : bubble concentration
⟨kb+⟩=4πD1(r1+⟨rb⟩) : average clustering rate in bubbles
⟨ib⟩=(i=N+1∑∞ici)/cb : average He content in bubbles
⟨ib⟩=(i=N+1∑∞ici)/cb
⟨ib⟩cb= i=N+1∑∞ici
∂t∂⟨ib⟩cb=i=N+1∑∞i∂t∂ci
💪
cb=i=N+1∑∞ci : bubble concentration
⟨kb+⟩=4πD1(r1+⟨rb⟩) : average clustering rate in bubbles
⟨ib⟩=(i=N+1∑∞ici)/cb : average He content in bubbles
⟨ib⟩=(i=N+1∑∞ici)/cb
⟨ib⟩cb= i=N+1∑∞ici
∂t∂⟨ib⟩cb=i=N+1∑∞i∂t∂ci
💪
∂t∂⟨ib⟩cb=(N+1)k1,N+c1cN+⟨kb+⟩c1cb
↓ trust me
cb=i=N+1∑∞ci : bubble concentration
⟨kb+⟩=4πD1(r1+⟨rb⟩) : average clustering rate in bubbles
⟨ib⟩=(i=N+1∑∞ici)/cb : average He content in bubbles
∂t∂c1=∇⋅(D1∇c1)+P1−2k1,1+c12−i=2∑N−1k1,i+c1ci−⟨kb+⟩c1cb
⋮
∂t∂ci=∇⋅(Di∇ci)−k1,i+c1ci+k1,i−1+c1ci−1
⋮
∂t∂cb=k1,N+c1cN
💪
∂t∂⟨ib⟩cb=(N+1)k1,N+c1cN+⟨kb+⟩c1cb
cb=i=N+1∑∞ci : bubble concentration
⟨kb+⟩=4πD1(r1+⟨rb⟩) : average clustering rate in bubbles
⟨ib⟩=(i=N+1∑∞ici)/cb : average He content in bubbles
Diffusion coefficients from Faney et al. Nucl. Fusion (2015)
Dissociation energies from Becquart et al. J. Nucl. Mater. (2010)
He1 | 0.13 | - | |
He2 | 0.20 | 1.0 | |
He3 | 0.25 | 1.5 | |
He4 | 0.20 | 1.5 | |
He5 | 0.12 | 1.6 | |
He6 | 0.30 | 2.0 |
D0(m2s−1)
ED(eV)
Eb(eV)
Faney et al Nucl. Fusion 2014
Rapidly negligible
∂t∂c1=∇⋅(D1∇c1)+P1−2k1,1+c12−i=2∑6k1,i+c1ci−⟨kb+⟩c1cb
⋮
∂t∂c6=∇⋅(D6∇c6)−k1,6+c1c6+k1,5+c1c5
∂t∂cb=k1,6+c1c6
∂t∂⟨ib⟩cb=7k1,6+c1c6+⟨kb+⟩c1cb
average clustering rate in bubbles
⟨kb+⟩=4πD1(r1+⟨rb⟩)
average bubble radius
⟨rb⟩=rHe0V1+(4π32a034⟨ib⟩)1/3−(4π32a03)1/3
Only 8 equations:
Faney et al. Nucl. Fusion 2014
30 nm
ci=0
ci=0
Discrepancies at high T due to different sets of dissociation energies
Solid: +0
Dashed: + 0.5 eV
Dash-point: - 0.5 eV
Mykola Ialovega's PhD research
Mykola Ialovega's PhD research
✔️Results in agreement with more complex models → additional assumptions are valid
✔️The model is in qualitative agreement with experiments
ci=0
0.6 mm
Can be compared to experiments!
Surface temperature: 350−2000K
Helium flux: 1019−1021m−2s−1
Varying temperature and particle flux
cHe1ideal=D1(T)φimpRp
Varying temperature and particle flux
1 h
∫cb⟨ib⟩dx
He inventory in bubbles
1 h
∫cb⟨ib⟩dx
He inventory in bubbles
1 h tert
⟨ib⟩ˉ=∫cbdx∫cb⟨ib⟩dx=totalbubblesinventory
Mean helium content in bubbles
1 h
⟨ib⟩ˉ=∫cbdx∫cb⟨ib⟩dx=totalbubblesinventory
Mean helium content in bubbles
∫cbdx
Total bubbles
1 h efef
∫cbdx
Total bubbles
1 h efef
⟨ib⟩ is low
⟨kb+⟩ is low
Nucleation
🡺Self trapping
🡺cb increases
⟨ib⟩ is low
⟨kb+⟩ is low
Nucleation
🡺Self trapping
🡺cb increases
Growth
🡺⟨ib⟩ increases
🡺⟨kb+⟩ increases
⟨ib⟩ is low
⟨kb+⟩ is low
When cb is large enough
Nucleation
🡺Self trapping
🡺cb increases
Growth
🡺⟨ib⟩ increases
🡺⟨kb+⟩ increases
🡺Nucleation stops
⟨ib⟩ is low
⟨kb+⟩ is low
When cb is large enough
∂t∂cb=k1,N+c1cN
∂t∂⟨ib⟩cb=(N+1)k1,N+c1cN+⟨kb+⟩c1cb
⟨ib⟩≈7⇔⟨kb+⟩≈0
⇔∂t∂⟨ib⟩cb≈(N+1)k1,N+c1cN
⇔⟨ib⟩∂t∂cb+cb∂t∂⟨ib⟩≈(N+1)k1,N+c1cN
⇔∂t∂⟨ib⟩∝N+1−⟨ib⟩≈0
cb≫cN
⇔cN≈0
⇔∂t∂cb≈0
⇔∂t∂⟨ib⟩cb≈⟨kb+⟩c1cb
⇔∂t∂⟨ib⟩≈⟨kb+⟩c1
Nucleation regime
Growth regime
Depth (nm)
Bubble radius (nm)
WIP: Collaboration with University of Tennesse, Knoxville
Coupled to the H transport code FESTIM
Reproduced TDS of deuterium in W pre-damaged with helium
Traps induced by bubbles!
Neutronics monoblock simulations with OpenMC
Tritium decay simulations with FESTIM
Neutronics monoblock simulations with OpenMC
Tritium decay simulations with FESTIM
Neutronics monoblock simulations with OpenMC
k+∝D=D0exp(−ED/kBT)
k−=k0−exp(−(ED+Eb)/kBT)
k−∝Dexp(−Eb/kBT)
k−∝k+exp(−Eb/kBT)
???