En búsqueda de la Energía Oscura con Euclid y experimentos cosmológicos de cuarta generación
Santiago Casas
Postdoctoral Researcher
TTK, RWTH Aachen University
http://www.esa.int/Science_Exploration/Space_Science
Laniakea: https://projets.ip2i.in2p3.fr//cosmicflows/
Millenium Simulation: https://wwwmpa.mpa-garching.mpg.de/
Illustris Simulation: www.nature.com/articles/nature13316
Planck 2018 CMB Temperature map (Commander) . wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
Planck 2018 CMB Dust polarization map . wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
Ecuación de campo de Einstein
Supernovas 1998, Premio Nobel 2011
Relatividad General y
condiciones iniciales cuánticas
Concordancia de observaciones, CMB (Premio Nobel 2006, COBE)
Concordance Cosmology:
Quantum Gravity?
O(100) orders of magnitude wrong
(Zeldovich 1967, Weinberg 1989, Martin 2012).
Composed of naturalness and coincidence
sub-problems, among others.
String Theory Landscape?
1. Lentes Gravitacionales
2. Radiación Cósmica de Fondo
Satélite Planck de la ESA
Datos y teoría calzan
3. Galaxy Clustering
Efectos de la gravedad sobre el espacio tiempo
Funciones de correlación
H0 tension at 5\(\sigma\)
Clustering amplitude \(\sigma8\)
Froustey et al, arXiv:2008.01074, arXiv: 2110.11296
The power spectrum is calculated from the linear density perturbations solving the Vlasov-Poisson system
Vlasov-Poisson system is a set of diff.eqn. in which all matter-radiation species are coupled
Slides by: Dennis Linde
Suppression of the power spectrum, at first order depends on energy density ratios
CMB angular spectrum and matter power spectrum are both dependent on neutrino mass, N_eff and ordering
Credits: Rodlophe Cledassou, CNES
Localizado en el punto de Lagrange L2
Credits: Rodlophe Cledassou, CNES
Instrumento VIS:
Credits: Rodlophe Cledassou, CNES
Instrumento NISP:
Credits: Rodolphe Cledassou, CNES
15,000 square degrees
Credits: Tobias Liaudat, CosmoStat
Credits: Rodlophe Cledassou, CNES
https://www.esa.int/ESA/Our_Missions
BAO
Clustering
RSD
Spec-z
Euclid Collaboration, IST:Forecasts, arXiv: 1910.09273
Slides by: Dennis Linde
Angulo et al, 1406.4143
Current data:
Image: https://www.cosmos.esa.int/web/planck/picture-gallery
Euclid:
Scales from: ~ \(10^{-3}\) to \(10\) hMpc\(^{-1}\)
Awardees of the Euclid STAR Prize Team 2019
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Bayes Theorem:
Probability of the model parameters given the data
Fisher Information Matrix:
Curvature (Hessian) of the Likelihood
Gaussian Likelihood in data space:
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Fisher Matrix for a Gaussian likelihood:
Parameter covariance:
Defines an ellipse:
Euclid IST:L and IST:NL in preparation
Plots by: Sabarish Sabarish Venkataramani
Euclid Full:
GC spectro + 3x2pt photo
Code: CosmicFish
S.Casas and M.Martinelli
Code: CosmicFish
S.Casas, M.Martinelli and M.Raveri
Soon to be released: New full pythonic version
Ezquiaga, Zumalacárregui, Front. Astron. Space Sci., 2018
In \(\Lambda\)CDM the two linear gravitational potentials \(\Psi\) and \(\Phi\) are equal to each other
We can describe general modifications of gravity (of the metric) at the linear level with 2 functions of scale (\(k\)) and time (\(a\))
Only two independent functions!
Text
Text
Text
Text
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structres
Text
SKA1 Medium Deep Band 1: \(20000 \,\rm{deg}^2\)
Text
Text
Casas, Martinelli, Pettorino, Carucci, Camera (in preparation)
Text
Modification of the Einstein-Hilbert action
Induces changes in the gravitational potentials *
*for negligible matter anisotropic stress
Scale-dependent growth of matter perturbations
Small changes in lensing potential
Free parameter: \(f_{R0}\)
Hu, Sawicki (2007)
"Fifth-force" scale for cosmological densities
\(\lambda_C =32 \rm{Mpc}\sqrt{|f_{R0}|/10^{-4}}\)
Euclid: Casas et al (2022) in preparation
Text
Euclid: Casas et al (2022) in preparation
Codes used: for background and scale-dependent linear perturbations: MGCAMB and EFTCAMB
For non-linear power spectrum:
Winther et al (2019) fitting formula
Text
Euclid: Casas et al (2022) in preparation
\(\sigma_{\log f_{R0}}=0.05\) (0.9%)
Full probe combination, optimistic Euclid constraints:
\(f_{R0}=(5.0^{+ 0.58}_{-0.52} \times 10^{-6})\)
Paper also contains impact of:
Text
Euclid: Casas et al (2022) in preparation
Text
Text
Muchas Gracias!!