Santiago Casas
Postdoctoral Researcher
TTK, RWTH Aachen University
The Horndeski Lagrangian
PhD thesis: Non-linear structure formation in models of Dark Energy and Modified Gravity, http://archiv.ub.uni-heidelberg.de/volltextserver/23120/
Beyond Einstein's GR
Scalar-Tensor theories
Effect on LSS
CONCEPT: Python and Neutrinos
GADGET2/CoDECS
Credit: Yun Ling, My bachelor student,
Jeppe Dakin (U. Zurich)
Credit: Dr. Marco Baldi, Master thesis co-supervisor
Approximate methods: COLA
ABACUS: Fits for GCspectro with 1loopEFT
Other codes tested:
gevolution
flowpm
GNQ: Growing Neutrino Quintessence (developed in Heidelberg)
Credit: Winther, Casas, Koyama, Li,...
Credit: Casas, Führer, Ayaita, Weber, Wetterich
Credit: Rademacher, Moradinezhad, Lesgourges, Casas
Credits: www.esa.int/Science_Exploration/Space_Science/Euclid, www.euclid-ec.org, ESA/NASA/SpaceX, Euclid Consortium
Euclid consortium scientist visits Cannes. Credits: ThalesAlenia Space
Euclid preparation: VII. Forecast validation for Euclid cosmological probes,,Blanchard et al. arXiv:1910.09273
★ Awardees of the Euclid STAR Prize Team 2019
EC Builder Status achieved 2023
Early Release Observations. ECICOM, ECEPO: Social media manager of instagram: @euclidconsortium
Euclid Launch: 1st July 2023
Large forecasting projects
The Fingertip Galaxy
SC, Lesgourgues, Schöneberg, et al., Euclid: Validation of the MontePython forecasting tools, 2303.09451
SC, Kunz, Martinelli, Pettorino, Phys.Dark Univ. 18 1703.01271
3x2pt Photometric Cosmic Shear + Clustering
Spectroscopic Galaxy Clustering: BAO+RSD+DM+LSS+Galaxy bias
Excellent complimentarity
https://www.esa.int/Science_Exploration/Space_Science/Euclid/Euclid_test_images_tease_of_riches_to_come
Code: CosmicFish
S.Casas, M.Martinelli and M.Raveri
Soon to be released: Full pythonic version
https://github.com/santiagocasas/cosmicfishpie
Cosmomathica/Fishermathica
Python, Numpy-intensive
Couples to CAMB, CLASS, HiCLASS, MGCAMB, input4cast files
GC, WL, 21cm-IM, 3x2pt, CMB
Euclid, DESI, Rubin LSST, SKAO
Wolfram Language,
Cosmomathica-FORTRAN link for CAMB
GC, WL
Euclid, SKA1
Used to produce and validate IST:F forecasts 2015-2019
Hessian of a Gaussian Likelihood. Used to approximate posterior distributions at the maximum (fiducial value)
First code to be validated against MontePython MCMC forecasts
SC, Lesgourgues, Schöneberg, et al., Euclid: Validation of the MontePython forecasting tools, 2303.09451
Euclid preparation: VII. Forecast validation for Euclid cosmological probes,,Blanchard et al. arXiv:1910.09273
SC, Kunz, Martinelli, Pettorino, Phys.Dark Univ. 18 1703.01271
https://github.com/santiagocasas/cosmomathica
SC, I. Tutusaus : Work Package lead of WP6, Forecasting and statistics
SC: Member of WP1,2,3,4,6,7,11 : From theory and non-linearities to likelihood
SC: Co-coordinator of the KeyPaper-Theory-1 project
SC, Cardone, Sapone, et al, Euclid: Constraints on f(R) cosmologies from the spectroscopic and photometric primary probes, 2306.11053
Frusciante, Pace, Cardone, SC et al, Euclid: Constraining linearly scale-independent modifications of gravity with the spectroscopic and photometric primary probes, 2306.12368
Main tasks:
Constrain gravitational potentials
Test for screening mechanisms
Check theories of modified gravity
Requires expertise with modified Einstein-Boltzmann solvers,
Emulators, Halo-model,
Fisher and likelihoods
EUCLID PRELIMINARY
Credit: P. Carrilho for IST:NL
Credit: SC, for IST:NL
Cosmological Likelihood for Observables in Euclid
Credit: SC, for IST:L
Credit: SC, for IST:NL
SC: Main developer and core member of CLOE. KeyPaper co-lead of 3x2pt in IST:NL
Preparation of DR1 analysis
Vera Rubin Observatory, LSST Project Office - http://www.lsst.org/gallery/telescope-rendering-2013
DESI telescope in Tucson, Arizona, in the Schuk Toak District on the Tohono O’odham Nation
Square Kilometer Array Observatory https://www.skao.int/
SC, Carucci, Pettorino et al (2022), Constraining gravity with synergies between radio and optical cosmological surveys, 2210.05705
CMB Stage-IV experiments: https://kipac.stanford.edu/research/projects/cmb-stage-4
Invited talk at the Manchester Optical x Radio Synergy meeting
Euclid Preparation: Sensitivity to Neutrino parameters. (Under internal review). Archidiacono, Lesgourgues, SC, Pamuk, et al.
EUCLID PRELIMINARY
Text
Merci!!
In collaboration with Johanna Schaffmeister and Sven Günther, students at RWTH
https://www.esa.int/Science_Exploration/Space_Science/Euclid/Euclid_test_images_tease_of_riches_to_come
Do galaxies just randomly spread out across the sky?
https://www.esa.int/Science_Exploration/Space_Science/Euclid/Euclid_test_images_tease_of_riches_to_come
No they do not, there is actually a 2-point correlation (and higher orders) among them
Expresses the excess probabilty of finding another galaxy as a function of scale
Strong hint that some physical mechanism is at play
https://www.esa.int/Science_Exploration/Space_Science/Euclid/Euclid_test_images_tease_of_riches_to_come
Shape and orientation of galaxies is also correlated -- due to Weak Gravitational Lensing -- and this tells us about (dark) structures in the Universe
Euclid Preparation: Sensitivity to Neutrino parameters. (Under internal review). Archidiacono, Lesgourgues, SC, Pamuk, et al.
EUCLID PRELIMINARY
In collaboration with Johanna Schaffmeister and Sven Günther
jaxcosmo library https://github.com/DifferentiableUniverseInitiative
Campagne, Lanusse, Zuntz, SC, et al, 2302.05163
Beyond \(\Lambda\)CDM the two linear gravitational potentials \(\Psi\) and \(\Phi\) are not equal to each other
We can describe general modifications of gravity (of the metric) at the linear perturbation level with 2 functions of scale (\(k\)) and time (\(a\))
Only two independent functions!
Parametrized approach for perturbations:
Planck 2018 results VI, arXiv:1807.06209
Planck 2015 results XIV, arXiv:1502.01590
Planck alone relatively unconstrained: 100-500% errors
Forecasts for Stage-IV : Euclid, DESI, SKA1, SKA2, only GC and WL
SC, Kunz, Martinelli, Pettorino, Phys.Dark Univ. 18 1703.01271
\(P^{\rm IM}(z,k) = \bar{T}_{IM}(z)^2 \rm{AP}(z) K_{\rm rsd}^2(z, \mu; b_{\rm HI}) \)
\(FoG(z,k,\mu_\theta) \\ \times P_{\delta\delta,dw}(z,k) \)
\( K_{\rm rsd}(z, \mu; b_{\rm HI}) = [b_{\rm HI}(z)^2+f(z)\mu^2] \)
\( b_{\rm HI}(z) = 0.3(1+z) + 0.6 \)
\( \bar{T}_{\mathrm{IM}}(z)= 189h \frac{(1+z)^2 H_0}{H(z)}\Omega_{HI}(z) \,\,{\rm mK} \)
\(\Omega_{HI} = 4(1+z)^{0.6} \times 10^{-4} \)
Carucci et al (2020) 2006.05996
Jolicoeur et al (2020) 2009.06197
\(P^{{\rm IM} \times \rm{g}}(z,k) = \bar{T}_{\rm IM}(z) {\rm AP} (z) r_{\rm IM,opt} K_{\rm rsd}(z, \mu; b_{\rm HI}) \)
\( \times K_{\rm rsd}(z, \mu; b_{\rm g}) FoG(z,k,\mu_\theta) P_{\delta\delta,dw}(z,k) \)
\( \times \exp[-\frac{1}{2} k^2 \mu^2 (\sigma_{\rm IM}(z)^2+\sigma_{\rm sp}(z)^2)] \)
SC, Carucci, Pettorino et al (2022) 2210.05705
Brightness temperature of 21cm emission line
Fraction of neutral hydrogen in the Universe
SC, Carucci, Pettorino et al (2022) 2210.05705
SC, Rubio, Pauly et al (2017) 1712.04956
Higgs-Dilaton inflation: early-late Universe connection
Model-independent anisotropic-stress \(\eta\)
Amendola, Pinho, SC 1805.00027
SC, Amendola, Baldi, Pettorino et al 1508.07208
Coupled Quintessence: DM-DE
Surviving Horndeski EFT
Frusciante, Peirone, SC, Lima, 1810.10521, Phys.Rev.D 99
Text
Growing Neutrino Quintessence
SC, Pettorino, Wetterich 1608.02358
Code: CosmicFish
S.Casas, M.Martinelli and M.Raveri
Soon to be released: New full pythonic version
https://github.com/santiagocasas/cosmicfishpie
Fisher Information Matrix:
Curvature (Hessian) of the Likelihood
Example: Fisher Matrix for a Gaussian likelihood of angular power spectra:
Brax, SC, Desmond, Elder 2201.10817, Universe 8 (2021), Review: Testing Screened Modified Gravity
Different types of screening:
Screening mechanisms can be characterized by the inequality:
For DE applications and under some assumptions:
Brax, SC, Desmond, Elder 2201.10817, Universe 8 (2021), Review: Testing Screened Modified Gravity
Text
SC et al, Euclid: Constraints on f(R) cosmologies from the spectroscopic and photometric primary probes, 2306.11053
Modification of the Einstein-Hilbert action
Induces changes in the gravitational potentials *
Scale-dependent growth of matter perturbations
Small changes in lensing potential
*for negligible matter anisotropic stress
Free parameter: \(f_{R0}\)
\(\lambda_C =32 \rm{Mpc}\sqrt{|f_{R0}|/10^{-4}}\)
"Fifth-force" scale for cosmological densities
Hu, Sawicki (2007)
Text
Codes used: for background and scale-dependent linear perturbations: MGCAMB and EFTCAMB
Non-linear matter power spectrum:
Winther et al (2019) fitting formula
Scale-dependent growth, change in forecasting pipeline
Current Euclid KP-JC6-SP paper in preparation (ledy by Kazuya), investigating biasing by Emulators/ReACT compared to simulations
SC et al, Euclid: Constraints on f(R) cosmologies from the spectroscopic and photometric primary probes, 2306.11053
Text
\(\sigma_{\log f_{R0}}=0.05\) (1%)
Current cosmological limits ~approx:
\( |f_{R0}|<10^{-6}\)
Full probe combination, optimistic Euclid constraints:
\(f_{R0}=(5.0^{+ 0.58}_{-0.52} \times 10^{-6})\)
Paper also contains impact of:
SC et al, Euclid: Constraints on f(R) cosmologies from the spectroscopic and photometric primary probes, 2306.11053
Text
Forecasts for:
Fruciante, Pace, Cardone, SC et al, Euclid: Constraining linearly scale-independent modifications of
gravity with the spectroscopic and photometric primary probes, 2306.12368
Current cosmo bounds \(\omega_{BD} \gtrapprox 1000 \), GR: \(\omega_{BD} \rightarrow \infty \)
\(r_c = G_5 / 2G_N \, , \Omega_{rc} \equiv c^2 / (4 r_c^2 H_0^2 ) \)
Current cosmo bounds \(\Omega_{rc} \lessapprox 0.27 \), GR: \(r_{c} \rightarrow \infty \)
Vary just \(\epsilon_{2,0}\) which in the limit \(\epsilon_{2,0} \rightarrow 0 \) turns the Kinetic term into a cosmological constant
Current cosmo bounds \( −0.04 \lessapprox \epsilon_{2,0} \lessapprox 0\)
Perform forecasts for limits close-to and far-from LCDM
Planck 2018 CMB Temperature map (Commander) . wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
What happened in between, if in its infancy it was a fairly Gaussian, linearly perturbed, homogenous and isotropic Universe?
The "surviving Horndeski" Lagrangian:
In the EFT formalism, FLRW, linear and
(unitary gauge time \(\rightarrow \phi\) ) :
Parametrize free functions and check for stability in solutions
We have shown that certain classes of models will not be distinguishable from LCDM, even with future surveys, at 1\(\sigma\), while others will be measured with 10%-60% precision in their parameters
Frusciante, Peirone, SC, Lima, 1810.10521, Phys.Rev.D 99
Code: CosmicFish
S.Casas, M.Martinelli and M.Raveri
Soon to be released: New full pythonic version
https://github.com/santiagocasas/cosmicfishpie
Looti
jaxcosmo library https://github.com/DifferentiableUniverseInitiative
Campagne, Lanusse, Zuntz, SC, et al, 2302.05163
Cosmomathica/Fishermathica
VIS cosmic shear map
https://www.euclid-ec.org/blog/
Euclid preparation: I. The Euclid Wide Survey of ESA, R. Scaramella et al.
VIS cosmic shear map
Directly constrains MG function \(\Sigma\) through Weyl potential
https://www.esa.int/Science_Exploration/Space_Science/Euclid/Euclid_test_images_tease_of_riches_to_come
With Stage-IV surveys we will have \(\approx 10^9\) galaxy shapes with photometric (approximate) and \(\approx 10^6\) (precise) redshifts and positions
Only 1/64th of the complete Euclid field of view is represented here, which in turn is equivalent to a mere quarter of the apparent size of the Moon. Consider the vast expanse of 15,000 square degrees, encompassing one-third of the entire sky!
Quantum Gravity?
O(100) orders of magnitude wrong
(Zeldovich 1967, Weinberg 1989, Martin 2012).
Composed of fine-tuning, hierarchy and coincidence
sub-problems, among others.
String Theory Landscape?
68% Dark Energy
5% Baryons
27% Dark Matter
Euclid: Forecasts for kk-cut 3×23×2 Point Statistics, P. Taylor, V. Cardone, ..., SC, et al. 2012.04672
BAO / AP-effect
Clustering
RSD
Spec-z
Euclid will also measure the 2pt corr-func of spectroscopic galaxies in redshift space
Euclid preparation: VII. Forecast validation for Euclid cosmological probes, Blanchard et al. arXiv:1910.09273
FoG
BAO-damping / IR-resummation
Bayes Theorem:
Probability of the model parameters given the data
Fisher Information Matrix:
Curvature (Hessian) of the Likelihood
Gaussian Likelihood in data space:
How do we actually perform those forecasts?
J. Schaffmeister
Euclid preparation: VII. Forecast validation for Euclid cosmological probes, Blanchard et al. arXiv:1910.09273
Fisher Matrix for a Gaussian likelihood of angular power spectra:
Parameter covariance:
Defines an ellipse:
Euclid preparation: VII. Forecast validation for Euclid cosmological probes, Blanchard et al. arXiv:1910.09273
In this 2-point correlation function we can see geometric features that are directly related to the expansion history of the Universe
Rademacher, Linde, Lesgourgues, Moradinezhad, SC in prep.
The more-realistic GCspectro model, based on Senatore, Ivanov, Simonovic, Vlah, et al
CLASS 1-loop Code in development
PRELIMINARY
1-loop PT of density and velocity in redshift space
4 counterterms, 4 shot-noise, 4 higher-order biases
Trade-off: larger error bars, more accuracy, less biasing
PyBird, PBJ, Fast-PT
Just 7 months of DESI data
5000 robotically controlled optical fibers
Tucson, Arizona, in the Schuk Toak District on the Tohono O’odham Nation
Credits: https://www.desi.lbl.gov
Just 7 months of DESI data
https://www.skao.int/
Gregory Horndeski
https://www.horndeskicontemporary.com/works
Costa Rica - Arenal Volcano
Gregory Horndeski
https://www.horndeskicontemporary.com/works
Credits: Tobias Liaudat, CosmoStat
Credits: Rodlophe Cledassou, CNES
doi: 10.1146/annurev.nucl.012809.104521
Age of the Universe
Temperature of the Universe
Planck 2018 results. VI. Cosmological parameters https://arxiv.org/abs/1807.06209
https://www.cosmos.esa.int/web/planck
Outline of working fields
Weak gravitational lensing
Galaxy Clustering
Orientation and ellipticities
Angles and redshifts
* The Astrophysical Journal Letters, 934:L7 (52pp), 2022 July 20
CMB angular spectrum and matter power spectrum are both dependent on neutrino mass, N_eff and ordering
Vlasov-Poisson system is a set of diff.eqn. in which all matter-radiation species are coupled
Slides by: Dennis Linde
https://www.pablocarlosbudassi.com/2021/02/the-infographic-and-artistic-work-named.html
Text
Modification of the Einstein-Hilbert action
Induces changes in the gravitational potentials *
*for negligible matter anisotropic stress
Scale-dependent growth of matter perturbations
Small changes in lensing potential
Free parameter: \(f_{R0}\)
Hu, Sawicki (2007)
"Fifth-force" scale for cosmological densities
\(\lambda_C =32 \rm{Mpc}\sqrt{|f_{R0}|/10^{-4}}\)
Euclid: Casas et al (2022) in preparation
Text
Euclid: Casas et al (2022) in preparation
Codes used: for background and scale-dependent linear perturbations: MGCAMB and EFTCAMB
For non-linear power spectrum:
Winther et al (2019) fitting formula