DR1 and MeerKLASS
for models of Dark Energy
*Collaboration Proposal
Santiago Casas,
with Isabella Carucci, Valeria Pettorino,
Stefano Camera, Matteo Martinelli, Martin Kunz
arXiv:2210.05705 Phys.Dark Univ. 39 (2023) 101151
L.Verde, et al 2019. arXiv:1907.10625
Lange et al. arXiv: 2301.08692
DES DRY3 arxiv:2207.05766
Ezquiaga, Zumalacárregui, Front. Astron. Space Sci., 2018
Gregory Horndeski
https://www.horndeskicontemporary.com/works
And in the Lorentz Institute seminar room!
Costa Rica - Arenal Volcano
Gregory Horndeski
https://www.horndeskicontemporary.com/works
Gregory Horndeski
https://www.horndeskicontemporary.com/works
And in the Lorentz Institute seminar room!
In \(\Lambda\)CDM the two linear gravitational potentials \(\Psi\) and \(\Phi\) are equal to each other
We can describe general modifications of gravity (of the metric) at the linear level with 2 functions of scale (\(k\)) and time (\(a\))
Only two independent functions
Planck 2015 results XIV, arXiv:1502.01590
Planck 2018 results VI, arXiv:1807.06209
2017 Forecasts for Stage-IV : Euclid, DESI, SKA1, SKA2, only GC and WL no cross-correlation
Casas et al (2017), arXiv:1703.01271
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structures
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structures
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Directly constrains MG function \(\Sigma\) through Weyl potential
BAO
Clustering
RSD
Spec-z
Euclid Collaboration, IST:Forecasts, arXiv: 1910.09273
\(P^{\rm IM}(z,k) = \bar{T}_{IM}(z)^2 \rm{AP}(z) K_{\rm rsd}^2(z, \mu; b_{\rm HI}) \)
\(FoG(z,k,\mu_\theta) \\ \times P_{\delta\delta,dw}(z,k) \)
\(\Omega_{HI} = 4(1+z)^{0.6} \times 10^{-4} \)
\( \bar{T}_{\mathrm{IM}}(z)= 189h \frac{(1+z)^2 H_0}{H(z)}\Omega_{HI}(z) \,\,{\rm mK} \)
Jolicoeur et al (2020) arXiv:2009.06197
Carucci et al (2020) arXiv:2006.05996
\( K_{\rm rsd}(z, \mu; b_{\rm HI}) = [b_{\rm HI}(z)^2+f(z)\mu^2] \)
\( b_{\rm HI}(z) = 0.3(1+z) + 0.6 \)
\( b_{\rm g}(z) = \) fit to simulations for given galaxy sample
Jolicoeur et al (2020) arXiv:2009.06197
Wolz et al (2021) arXiv:2102.04946
\(\sigma_i(z) = \frac{c}{H(z)}(1+z) \delta_z\)
\(P^{{\rm IM} \times \rm{g}}(z,k) = \bar{T}_{\rm IM}(z) {\rm AP} (z) r_{\rm IM,opt} K_{\rm rsd}(z, \mu; b_{\rm HI}) \)
\( \times K_{\rm rsd}(z, \mu; b_{\rm g}) FoG(z,k,\mu_\theta) P_{\delta\delta,dw}(z,k) \)
\( \times \exp[-\frac{1}{2} k^2 \mu^2 (\sigma_{\rm IM}(z)^2+\sigma_{\rm sp}(z)^2)] \)
HI galaxies spectroscopic survey
SKA1 Redbook 2018, arXiv:1811.02743
SKA1 Medium Deep Band 2: \(5000 \, \rm{deg}^2\)
SKA1 Redbook 2018, arXiv:1811.02743
Continuum galaxy survey
SKA1 Medium Deep Band 2: \(5000 \, \rm{deg}^2\)
*kindly provided by Stefano Camera
Continuum galaxy survey
SKA1 Medium Deep Band 2: \(5000 \, \rm{deg}^2\)
SKA1 Medium Deep Band 1: \(20000 \,\rm{deg}^2\)
Euclid
DESI
Vera Rubin Obs. LSST
Given a likelihood function L, representing the probability of the data d, given the model parameters \( \Theta\) , the Fisher matrix is defined as the Hessian of the L:
Assuming that L is a multivariate Gaussian distribution with a covariance matrix C independent of \(\Theta\) :
The explicit form of F, depends on the given observational probe and the physical model assumption, for example for GCsp:
What do we expect from the forecasts before doing them, just by looking at the formulas and the specs?
Let's see the results !
DESI_E : high-z Emission Line Galaxies
DESI_B: low-z Bright Galaxy Sample
SKAO GCsp: low-z HI Galaxies
Work in progress:
Same but with Euclid!
PRELIMINARY
However, Euclid DR3 + SKAO AA4 is too far in the future!
Code: CosmicFishPie
S.Casas, M.Martinelli and M.Raveri, S. Pamuk and more!
Soon to be released with MCMC support!
Contains:
Euclid (spectro+photo), Planck, LSST, DESI, SKAO IM, HI and continuum
https://github.com/santiagocasas/cosmicfishpie
jaxcosmo library https://github.com/DifferentiableUniverseInitiative
Campagne, Lanusse, Zuntz, SC, et al, 2302.05163
We still need to develop many parts of a differentiable pipeline!
TOPO-COBAYA: https://github.com/santiagocasas/topo-cobaya
Thankfully provided by Zé
Thankfully provided by Zé
Now implemented into CosmicFishPie
My ex-student now collaborator Sefa Pamuk is implementing masks into a CF-based code
(now PhD candidate of José Bernal)
SKAO IM - MCMC
Using Cosmic(Jelly)Fish + Nautilus -> 40min on a laptop
Seems futuristic!
Credit: Guadalupe Cañas, Pedro Carrilho, Santiago Casas, for IST:NL/L, KPs, CLOE papers
Neglecting baryons -> bias!!
Linde, Moradinezhad, Rademacher, SC, Lesgourgues (2402.09778)
CLASS 1-loop Code in development in Aachen, RWTH
Validated against CLASS-PT, Velocileptors
Implemented in MontePython, soon in CosmicFishPie for GCsp and IM
in Fourier and "Legendre"
Text
Text
Text
Text
Backup slide
Santiago Casas
SKA1:
GC+WL+XC (Continuum) +
IM (HI 21cm) + GCsp(HI)
vs
Euclid
(Gcsp+GCph+WL+XCph)
vs
Euclid
(Gcsp+GCph+WL+XCph)+SKA1 Pk-probes.
Unfortunately, the \(\mu\) constraints from Euclid alone dominate over the improvement that SKA1 "Pk-probes" add
PRELIMINARY
Backup slide
Testing at higher H0 value
Santiago Casas, 06.12.22
Casas et al (2017), arXiv:1703.01271
Santiago Casas, 06.12.22
Casas et al (2017), arXiv:1703.01271
Santiago Casas, 02.11.21
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Number of dishes
Effective beam
\(\beta_{SD} = \exp[-\frac{k_\perp r(z)^2 \theta_b (z)^2}{8 \ln 2}] \)
\( \alpha_{SD} = \frac{1}{N_d} \)
Jolicoeur et al (2020) arXiv:2009.06197
Backup slide
Backup slide
Backup slide
Backup slide