Fall 2025, Prof Sarah Dean
"What we do"
columns \(w_i\)
"modes"
diag(\(\lambda_i\))
"spectrum"
entries \(b_i(x_0)\)
"initial amplitudes"
"Why we do it"
Deriving the form of the predictions:
$$\hat\Theta = \arg\min_{\Theta\in \mathbb R^{ d_\varphi \times d_\varphi}} \sum_{k=1}^n (\Theta^\top \varphi(x_k) - \varphi(x_{k+1}))^2 + \lambda \|\Theta\|_F^2$$
Deriving the form of the predictions:
Given: data \(\{x_k\}_{k=1}^{n+1}\), find nonlinear dynamics model
Next time: autoregressive models and partial state observation