Fall 2025, Prof Sarah Dean
"What we do"
"Why we do it"
Example: Fibonacci sequence: $$1,1, 2, 3, 5, 8, 13, 21, ...$$
Proof by construction
let \(s_t = \begin{bmatrix}y_t^\top & ... & y_{t-L+1}^\top \end{bmatrix}^\top \in\mathbb R^{Ld_y}\)
$$ \text{let}~~ F = \begin{bmatrix}&& \Theta^\top \\ I & 0\\ & I & 0\\ && \ddots&& \\ &&& I &0\\\end{bmatrix},\quad H =\begin{bmatrix} I & 0 & ... \end{bmatrix}$$
\(y_k\) for \(k\leq 0\) are free variables
Example: The state \(s=[\theta,\omega]\), output \(y=\theta\), and
$$\theta_{t+1} = 0.9\theta_t + 0.1 \omega_t,\quad \omega_{t+1} = 0.9 \omega_t$$
Example: The state \(s=[\theta,\omega]\), output \(y=\theta\), and
$$\theta_{t+1} = 0.9\theta_t ,\quad \omega_{t+1} = 0.9 \omega_t$$
Definition: A PO system is observable if outputs \(y_{0:t}\) uniquely determine the state trajectory \(s_{0:t}\) for some finite \(t\).
\(s_{t+1} = F(s_t)\)
\(y_t = H(s_t)\)
\((y_0,...,y_t) = \Phi_{0\to t}(s_0)\)
Theorem: A linear system is observable if and only if
$$\mathrm{rank}\Big(\underbrace{\begin{bmatrix}H\\HF\\\vdots \\ HF^{d_s-1}\end{bmatrix}}_{\mathcal O}\Big) = d_s$$
\(s_{t+1} = F s_t\)
\(y_t = H s_t\)
Theorem: A linear system is observable if and only if
$$\mathrm{rank}\Big(\underbrace{\begin{bmatrix}H\\HF\\\vdots \\ HF^{d_s-1}\end{bmatrix}}_{\mathcal O}\Big) = d_s$$
\(\begin{bmatrix} y_0\\y_1\\\vdots\\y_t\end{bmatrix}=\)
\(\begin{bmatrix} Hs_0\\HFs_0\\\vdots\\HF^ts_0\end{bmatrix}\)
Proof: The system response \(\Phi_{0\to t}\) is defined in terms of \(F\in\mathbb R^{d_s\times d_s}\) and \(H\in\mathbb R^{d_s\times d_y}\)
1) \(\mathrm{rank}(\mathcal O) = d_s \implies\) observable
$$\begin{bmatrix} y_0 \\ \vdots \\ y_{d_s-1}\end{bmatrix} = \begin{bmatrix}H\\HF\\\vdots \\ HF^{d_s-1}\end{bmatrix} s_0 $$
2) \(\mathrm{rank}(\mathcal O) = d_s \impliedby\) observable
Proof:
2) \(\mathrm{rank}(\mathcal O) < d_s \implies\) not observable
\(\begin{bmatrix} y_0\\y_1\\\vdots\\y_t\end{bmatrix}=\underbrace{\begin{bmatrix} H\\HF\\\vdots\\HF^t\end{bmatrix}}_{\mathcal O_t} s_0\)
Proof:
1) \(\mathrm{rank}(\mathcal O) = d_s \implies\) observable
$$\begin{bmatrix} y_0 \\ \vdots \\ y_{d_s-1}\end{bmatrix} = \begin{bmatrix}H\\HF\\\vdots \\ HF^{d_s-1}\end{bmatrix} s_0 $$
There is inherent ambiguity in state space representations
for partially observed dynamics
Example: Consider the sequence: $$1,1, 2, 3, 5, 8, 13, 21, ...$$
There is inherent ambiguity in state space representations
for partially observed dynamics
Suppose \(\hat F, \hat H, \hat s_0\) satisfies the equations
Then so does \(\tilde F=M^{-1}\hat F M, \tilde H=\hat HM, \tilde s_0=M^{-1}\hat s_0\)
$$\mathcal O_L = \begin{bmatrix}H\\HF\\\vdots \\ HF^{L-1}\end{bmatrix} $$
Recall the observability matrix
$$=\begin{bmatrix}HM\\HMM^{-1} FM\\\vdots \\ HMM^{-1} F^{L-1}M\end{bmatrix} $$
$$=\mathcal O_L M $$
Approach: subspace identification of the rank \(d_s\) column space of \(\mathcal O_L\) (\(L\geq d_s\))
Note: column space is invariant under similarity transforms
What we do:
$$\begin{bmatrix}y_0\\\vdots \\ y_{L-1}\end{bmatrix} =\mathcal O_L s_0 $$
$$\begin{bmatrix}y_1\\\vdots \\ y_{L}\end{bmatrix} =\mathcal O_L s_{1} $$
\(\dots\)
$$\begin{bmatrix}y_m\\\vdots \\ y_{L+m-1}\end{bmatrix} =\mathcal O_L s_{k} $$
$$Y_{L,m} =\mathcal O_L \begin{bmatrix}s_0 & s_1 &\dots & s_m\end{bmatrix}$$
Construct the Hankel matrix and consider its column space $$\begin{bmatrix}y_0 & \dots &y_m\\\vdots & \ddots&\vdots\\ y_{L-1}&\dots& y_{L+m-1}\end{bmatrix} =Y_{L,m} $$
Why we do it:
Step 1: Estimate \(\mathcal O_t\)
Step 2: Recover \(\hat F\) and \(\hat H\) from \(\hat{\mathcal O}\)
$$\hat{\mathcal O}_t = \begin{bmatrix}\hat{\mathcal O}_t [0]\\\hat{\mathcal O}_t [1]\\\vdots \\ \hat{\mathcal O}_t [t]\end{bmatrix}\approx \begin{bmatrix}H\\HF\\\vdots \\ HF^{t}\end{bmatrix} $$
So we set \(\hat H = \hat {\mathcal O}_t[0]\) and \(\hat F\) as solving
Extract column space using singular value decomposition (SVD) \(Y_{t,k} = \begin{bmatrix}U_{d_s} & U_{2}\end{bmatrix} \begin{bmatrix}\Sigma_{d_s} \\& 0\end{bmatrix}V^\top \)
Set \(\hat{\mathcal O}_t = U_{d_s}\)
Next time: stochastic dynamics and filtering
Reference: Callier & Desoer, "Linear Systems Theory" and Verhaegen & Verdult "Filtering and System Identification"