Modeling a traffic light warning system for acute respiratory infections as an optimal control problem
ASU-MathBio seminar
Saul Diaz Infante Velasco
Adrian Acuña Zegarra
Jorge Velasco Hernandez
sauldiazinfante@gmail.com
Guidelines for estimating the risk of the epidemiological traffic light
Vaccination camping
Omicron variant
Introduction
We propose an extension of the classic Kermack-McKendrick mathematical model. 𝑁(𝑡) is constant and is split into four compartments:
Susceptible individuals can become infected when interacting with an infectious individual. After a period of time (1∕𝛾), infected people recover. Recovered people lose their natural immunity after a period of time 1∕𝜃.
Risk index
Another closely related index that has been used to monitor and evaluate the development of ARI is the event gathering risk, developed by Chande (2020).
Chande, A., Lee, S., Harris, M. et al. Real-time, interactive website for US-county-level COVID-19 event risk assessment. at Hum Behav, 1313–1319 (2020). https://doi.org/10.1038/s41562-020-01000-9
Present a model for designing and evaluating light-traffic epidemic policies based on optimal control.
# MODEL FORMULATION
Risk index
gives the probability of finding at time t an infected person in a group of k individuals.
# REPRODUCTIVE NUMBER
Normalization
Invariance
Basic Reproductive number
FDE
Effective reproduction number
# Light Traffic Policies and Optimal Control
Hypothesis
(OCP) Decide in each stage (a week), the light color that minimize functional cost J
subject to:
Counterfactual vs controlled dynamics
Counterfactual vs controlled dynamics
Counterfactual vs controlled dynamics
The influence of mobility restriction expenses over prevalence and cost
Expenses
due to mobility restrictions
The influence of decision period span over prevalence and cost
Perspectives
References
https://slides.com/sauldiazinfantevelasco/code
https://www.medrxiv.org/content/10.1101/2022.12.16.22283591v1