Modeling a traffic light warning system for acute respiratory infections as an optimal control problem

ASU-MathBio seminar

Saul Diaz Infante Velasco

Adrian Acuña Zegarra

Jorge Velasco Hernandez

sauldiazinfante@gmail.com

Guidelines for estimating the risk of the epidemiological traffic light

Vaccination camping

 Omicron variant

Introduction

We propose an extension of the classic Kermack-McKendrick mathematical model. 𝑁(𝑡) is constant and is split into four compartments:

  • susceptible (𝑆(𝑡)),
  • infected (𝐼(𝑡)),
  • recovered (𝑅(𝑡)),
  • and vaccinated (𝑉 (𝑡)).

Susceptible individuals can become infected when interacting with an infectious individual. After a period of time (1∕𝛾), infected people recover. Recovered people lose their natural immunity after a period of time 1∕𝜃.

C_k(t^*) = 1 - \left(1 - \frac{I(t^*)}{N(t^*)}\right)^k

Risk index

Another closely related index that has been used to monitor and evaluate the development of ARI is the event gathering risk, developed by Chande (2020).

Chande, A., Lee, S., Harris, M. et al. Real-time, interactive website for US-county-level COVID-19 event risk assessment. at Hum Behav, 1313–1319 (2020). https://doi.org/10.1038/s41562-020-01000-9

Objective

Present a model for designing and evaluating light-traffic epidemic policies based on optimal control.

Outline

  1. Model Formulation:
    • Risk Index and 
    • Functional Cost:Political economic implications
  2. Numerical experiments
  3. Perspectives

Objective and Outline

\begin{aligned} S' =& \mu N - \lambda(t)S - (\phi + \mu) S + \omega V + \theta R \\ I' =& \lambda(t) (S + (1 - \sigma)V) - (\gamma + \mu) I \\ V' =& \phi S - (1 - \sigma) \lambda(t)V - (\omega + \mu) V \\ R' =& \gamma I - (\theta + \mu) R \end{aligned}
\begin{aligned} C^{\prime} =& k (1 - C)^{\left(1 - \frac{1}{k}\right)} \left(1 - (1 - C)^{\frac{1}{k}}\right) \\ & \times \left( \beta(t) (1 - C(t)) (S + (1 - \sigma)V) \frac{1}{N} - (\gamma + \mu) \right). \end{aligned}
\begin{aligned} \beta(t) & = \left( 1 + a \cos \left( \frac{2\pi}{365} t \right) \right) \beta_0 \\ \lambda(t) & = \beta(t) (1 - C(t)) \frac{I(t)}{N} \end{aligned}
# MODEL FORMULATION
C(t) = 1 - \left(1 - \frac{I(t)}{N}\right)^k

Risk index

gives the probability of finding at time t an infected person in a group of k individuals.

\begin{aligned} C' =& k (1 - C)^{\left(1 - \frac{1}{k}\right)} \left(1 - (1 - C)^{\frac{1}{k}}\right) \\ & \times \left( \beta(t) (1 - C(t)) (S + (1 - \sigma)V) \frac{1}{N} - (\gamma + \mu) \right) \end{aligned}
\begin{aligned} x^{\prime} &= \mu - \hat{\lambda}(t)x - (\phi + \mu) x + \omega v + \theta z \\ y^{\prime} &= \hat{\lambda}(t) (x + (1 - \sigma)v) - (\gamma + \mu) y \\ v^{\prime} &= \phi x - (1 - \sigma) \hat{\lambda}(t)v - (\omega + \mu) v \\ z^{\prime} &= \gamma y - (\theta + \mu) z \\ C^{\prime} &= k (1 - C)^{\left(1 - \frac{1}{k}\right)} \left( 1 - (1 - C)^{\frac{1}{k}} \right) \\ & \times \left( \beta(t) (1 - C(t)) (x + (1 - \sigma) v) - (\gamma + \mu) \right) \end{aligned}

# REPRODUCTIVE NUMBER

x = \frac{S}{N}; \quad y = \frac{I}{N}; \quad v = \frac{V}{N}; \quad z = \frac{R}{N}

Normalization

\begin{aligned} \Omega = \Big \{ & (x, y, v, z, C)\in \mathbb{R}^5_+ : \\ & 0\leq C\leq 1, \\ & 0 \leq s, \forall s \in \{x, v, y, z \}, \\ & x + y + v + z = 1 \Big \} \end{aligned}

Invariance

\mathcal{R}_0 = \frac{\beta_0(1 - C^*)(x^* + (1 - \sigma)v^*)}{(\gamma + \mu)}

Basic Reproductive number

\begin{aligned} x^* &= \frac{\omega + \mu}{\phi + \omega + \mu} \\ v^* &= \frac{\phi}{\phi + \omega + \mu} \\ C^* &= 0 \end{aligned}

FDE

Effective reproduction number

\mathcal{R}_t = \frac{\beta(t)(1 - C(t))(x(t) + (1 - \sigma)v(t))}{(\gamma + \mu)}
# Light Traffic Policies and  Optimal Control
\xi(t)^\top:= (s(t), y(t),v(t),z(t), C(t))
\xi(t_0) \xrightarrow{\varphi}
A(\xi):= \Big \{green, yellow, orange, red \Big\}
(u_{\beta}^{4}, u_k^{4})
(u_{\beta}^{1}, u_k^{1})
(u_{\beta}^{3}, u_k^{3})
(u_{\beta}^{2}, u_k^{2})
  • A decision-maker can apply a strategy from a finite set of actions.
  • The set of actions implies a particular effect accordingly to the light semaphore.
  • We describe this effect by modulating the transmission rate and size of gathering :
\beta(t),\ k.
  • A decision-maker can apply a strategy from a finite set of actions.
  • The set of actions implies a particular effect accordingly to the light semaphore.
  • We describe this effect by modulating the transmission rate and size of gathering.
\begin{aligned} \widehat{\lambda}(u_{\beta}, T_j):= & \beta(t)(1 - u_{\beta}) (1 - C(t)) y(t) \\ k(u_k, T_j):= & (1 - u_k) k \end{aligned}
\begin{aligned} x^{\prime} =& \mu - \widehat{\lambda}(u_{\beta}, t) x - (\phi + \mu) x + \omega v + \theta z \\ y^{\prime} =& \widehat{\lambda}(u_{\beta}, t) (x + (1 - \sigma)v) - (\gamma + \mu) y \\ v^{\prime} =& \phi x - (1 - \sigma) \widehat{\lambda}(u_{\beta}, t) v - (\omega + \mu) v \\ z^{\prime} =& \gamma y - (\theta + \mu) z \\ C^{\prime} =& k(u_k, T_j) (1 - C) ^ { \left( 1 - \frac{1}{k(u_k, T_j)} \right) } \left( 1 - (1 - C) ^ \frac{1}{k(u_k, T_j)} \right) \\ & \times \left[ \beta(t) (1 - u_{\beta}) (1 - C(t)) (x + (1 - \sigma) v) - (\gamma + \mu) \right] \end{aligned}
T_i
T_{i+1}
T_{i-1}
\overbrace{\text{decision period}}^{p_j := t_j - t_{j-1}}
\underset{ \substack{ j \in A \\ A:=\{\text{green, yellow, orange, red} \} } } %} { J \left( \xi^{[p_i]}, u_{\beta} ^{[j]}, u_k^{[j]} \right) } := \underbrace{ \int_{0}^T a_I y(s) }_{YLD} ds + \underbrace{ \int_{0}^T a_C C(s) + a_{\beta} u_{\beta}^2(s) + a_k u_k^2(s) }_{ \substack{ \text{political and economic} \\ \text{implications} } } ds.
\beta \rightsquigarrow \beta (1 -u_{\beta})
k \rightsquigarrow k (1 - u_{k})
\underset{ \substack{ j \in A \\ A:=\{\text{green, yellow, orange, red} \} } } %} { J \left( \xi^{[p_i]}, u_{\beta} ^{[j]}, u_k^{[j]} \right) } := \underbrace{ \int_{0}^T a_I y(s) }_{YLD} ds + \underbrace{ \int_{0}^T a_C C(s) + a_{\beta} u_{\beta}^2(s) + a_k u_k^2(s) }_{ \substack{ \text{political and economic} \\ \text{implications} } } ds.
  • The decision maker only chooses the strategy from a finite set of actions--as mentioned above-- and according to the light traffic protocol. Thus, the controller decides which color from the plausible light-traffic actions for the next period.
  • The corresponding authorities periodically meet every few weeks and make a decision.
  • The decision taken minimizes the functional J subject to the mentioned dynamics.

 

Hypothesis

T_i
T_{i+1}
T_{i-1}
\overbrace{\text{decision period}}^{p_j := t_j - t_{j-1}}

(OCP) Decide in each stage (a week), the light color that minimize functional cost J

\begin{aligned} \beta(t) := & \left( 1 + a \cos \left( \frac{2\pi}{365} t \right) \right) \beta_0 \\ \widehat{\lambda}(u_{\beta}, t_j):= & \beta(t)(1 - u_{\beta}) (1 - C(t)) y(t) \\ k(u_k, t_j):= & (1 - u_k) k \end{aligned}
\begin{aligned} x^{\prime} =& \mu - \widehat{\lambda}(u_{\beta}, t) x - (\phi + \mu) x + \omega v + \theta z \\ y^{\prime} =& \widehat{\lambda}(u_{\beta}, t) (x + (1 - \sigma)v) - (\gamma + \mu) y \\ v^{\prime} =& \phi x - (1 - \sigma) \widehat{\lambda}(u_{\beta}, t) v - (\omega + \mu) v \\ z^{\prime} =& \gamma y - (\theta + \mu) z \\ C^{\prime} =& k(u_k, t_j) (1 - C) ^ { \left( 1 - \frac{1}{k(u_k, t_j)} \right) } \left( 1 - (1 - C) ^ \frac{1}{k(u_k, t_j)} \right) \\ & \times \left[ \beta(t) (1 - u_{\beta}) (1 - C(t)) (x + (1 - \sigma) v) - (\gamma + \mu) \right] \end{aligned}
\underset{ \substack{ j \in A \\ A:=\{\text{green, yellow, orange, red} \} } } { \min } J \left( \xi^{[p_i]}, u_{\beta} ^ {[j]}, u_k ^ {[j]} \right) := \underbrace{ \int_{T_{i-1}} ^ {T_{i}} a_I y(s) }_{YLD} ds + \underbrace{ \int_{T_{i-1}} ^{T_{i}} a_C C(s) + a_{\beta} u_{\beta}^2(s) + a_k u_k ^ 2(s) }_{ \substack{ \text{political and economic} \\ \text{implications} } } ds.

subject to:

Counterfactual vs controlled dynamics

Counterfactual vs controlled dynamics

Counterfactual vs controlled dynamics

The influence of mobility restriction expenses over prevalence and cost 

\underset{ \substack{ j \in A \\ A:=\{\text{green, yellow, orange, red} \} } } { J \left( \xi^{[p_i]}, u_{\beta} ^ {[j]}, u_k ^ {[j]} \right) } := % \int_{T_{i-1}} ^ {T_{i}} a_I y(s) + a_C C(s) ds + \int_{T_{i-1}} ^{T_{i}} a_{\beta} u_{\beta}^2(s) + a_k u_k ^ 2(s) ds.

Expenses

due to mobility restrictions

a_{\beta} \searrow

The influence of decision period span over prevalence and cost 

\underset{ \substack{ j \in A \\ A:=\{\text{green, yellow, orange, red} \} } } { J \left( \xi^{[p_i]}, u_{\beta} ^ {[j]}, u_k ^ {[j]} \right) } := % \int_{T_{i-1}} ^ {T_{i}} a_I y(s) + a_C C(s) ds + \int_{T_{i-1}} ^{T_{i}} a_{\beta} u_{\beta}^2(s) + a_k u_k ^ 2(s) ds.
\underbrace{p_i:=T_{i+1} - T_i}_{\substack{decision \\ period}}
p_i \nearrow
  • Our model suggest that this kind of Policies follows a delicate balanced between health benefit and economic cost

Perspectives

  • Uncertainty quantification
  • Partial information
  • Games

References

  1. Chande, A., Lee, S., Harris, M. et al. Real-time, interactive website for US-county-level COVID-19 event risk assessment. Nat Hum Behav 4, 1313–1319 (2020). https://doi.org/10.1038/s41562-020-01000-9
  2. Chan, H.F., Skali, A., Savage, D.A. et al. Risk attitudes and human mobility during the COVID-19 pandemic. Sci Rep 10, 19931 (2020). https://doi.org/10.1038/s41598-020-76763-2
  3. P. van den Driessche, James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, Volume 180, Issues 1–2, 2002,Pages 29-48,ISSN 0025-5564, https://doi.org/10.1016/S0025-5564(02)00108-6.

https://slides.com/sauldiazinfantevelasco/code

https://www.medrxiv.org/content/10.1101/2022.12.16.22283591v1