Advances in reproducible simulation of parcel deliveries based on open data
Sebastian Hörl
6 December 2021
HEADS-UP at IRT SystemX
Classic transport planning
Aggregated
Agent-based models
0:00 - 8:00
08:30 - 17:00
17:30 - 0:00
0:00 - 9:00
10:00 - 17:30
17:45 - 21:00
22:00 - 0:00
Disaggregated
Icons on this and following slides: https://fontawesome.com
MATSim
matsim-org/matsim-libs
MATSim
Synthetic demand
MATSim
Mobility simulation
Synthetic demand
MATSim
Decision-making
10:00 - 17:30
17:45 - 21:00
22:00 - 0:00
Mobility simulation
Synthetic demand
MATSim
Decision-making
Mobility simulation
Synthetic demand
MATSim
Decision-making
Mobility simulation
Analysis
Synthetic demand
MATSim @ IRT SystemX
Passenger transport
MATSim @ IRT SystemX
Passenger transport
Freight transport
LEAD Project
Low-emission Adaptive last-mile logistics supporting on-demand economy through Digital Twins
Lyon Living Lab
Modeling methodology
Modeling methodology
Agent-based simulation of Lyon
Modeling methodology
Agent-based simulation of Lyon
Demand in parcel deliveries
Modeling methodology
Agent-based simulation of Lyon
Demand in parcel deliveries
Distribution by operators
Modeling methodology
Agent-based simulation of Lyon
Demand in parcel deliveries
Distribution by operators
KPI Calculation
Population census (RP)
Income data (FiLoSoFi)
Commuting data (RP-MOB)
National HTS (ENTD)
Enterprise census (SIRENE)
OpenStreetMap
GTFS (SYTRAL / SNCF)
Address database (BD-TOPO)
Methodology: Synthetic travel demand
EDGT
Synthetic travel demand has been generated for Lyon in order to perform agent-based mobility simulation of all residents' movements.
Methodology: Synthetic travel demand
Open
Data
Open
Software
+
=
Reproducible research
Integrated testing
Population census (RP)
Income data (FiLoSoFi)
Commuting data (RP-MOB)
National HTS (ENTD)
Enterprise census (SIRENE)
OpenStreetMap
GTFS (SYTRAL / SNCF)
Address database (BD-TOPO)
EDGT
Synthetic travel demand has been generated for Lyon in order to perform agent-based mobility simulation of all residents' movements.
Methodology: Synthetic travel demand
Open
Software
=
Reproducible research
Integrated testing
Paper published July 2021
Open
Data
Open
Software
+
=
Reproducible research
Integrated testing
Population census (RP)
Income data (FiLoSoFi)
Commuting data (RP-MOB)
National HTS (ENTD)
Enterprise census (SIRENE)
OpenStreetMap
GTFS (SYTRAL / SNCF)
Address database (BD-TOPO)
EDGT
Synthetic travel demand has been generated for Lyon in order to perform agent-based mobility simulation of all residents' movements.
Methodology: Synthetic travel demand
Methodology: Parcel demand
Synthetic population
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
Methodology: Parcel demand
Synthetic population
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
Methodology: Parcel demand
Synthetic population
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Iterative proportional fitting (IFP)
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Maximum entropy approach
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Methodology: Parcel demand
Synthetic population
Gardrat, M., 2019. Méthodologie d’enquête: le découplage de l’achat et de la récupération des marchandises par les ménages. LAET, Lyon, France.
+
Synthetic population
Out-of-home purchase survey
Achats découplés des ménages
Based on sociodemographic attributes of the households, parcels are generated for the city on an average day.
Presence of household members
First case study
Hörl, S. and J. Puchinger (2021) From synthetic population to parcel demand: Modeling pipeline and case study for last-mile deliveries in Lyon, Working paper.
Solve VRP-TW based on generated parcels and household presence
JSprit
First case study
Hörl, S. and J. Puchinger (2021) From synthetic population to parcel demand: Modeling pipeline and case study for last-mile deliveries in Lyon, Working paper.
Solve VRP-TW based on generated parcels and household presence
JSprit
Scaling up: City-wide baseline
Using shares of customer preference, parcels are assigned to operators and the closest distribution centers.
SIRENE: Delivery centers
Using shares of customer preference, parcels are assigned to operators and the closest distribution centers.
SIRENE: Delivery centers
Assignment of parcels to operators based on customer preference survey (sendcloud)
Scaling up: City-wide baseline
Using shares of customer preference, parcels are assigned to operators and the closest distribution centers.
SIRENE: Delivery centers
Assignment of parcels to operators based on customer preference survey (sendcloud)
Scaling up: City-wide baseline
Using shares of customer preference, parcels are assigned to operators and the closest distribution centers.
SIRENE: Delivery centers
Assignment of parcels to operators based on customer preference survey (sendcloud)
Scaling up: City-wide baseline
Scaling up: City-wide baseline
First main result: Estimate of the total distance driven for parcel deliveries in Lyon (by the most frequent operators).
Recap
Parcel optimization
Baseline movements
Cut-out of scenarios
Coming up: KPI Calculation
GHG/PM Emissions: Simulation based on Hbefa database with detailed driving conditions (cold start, current speed, ...)
(Alternative in LEAD: COPERT)
Coming up: KPI Calculation
GHG/PM Emissions: Simulation based on Hbefa database with detailed driving conditions (cold start, current speed, ...)
(Alternative in LEAD: COPERT)
Noise Emissions: Simulation simulates noise emissions and emissions to arrive at exposure values
Coming up: KPI Calculation
GHG/PM Emissions: Simulation based on Hbefa database with detailed driving conditions (cold start, current speed, ...)
(Alternative in LEAD: COPERT)
Noise Emissions: Simulation simulates noise emissions and emissions to arrive at exposure values
Aggregation
Coming up: KPI Calculation
GHG/PM Emissions: Simulation based on Hbefa database with detailed driving conditions (cold start, current speed, ...)
(Alternative in LEAD: COPERT)
Noise Emissions: Simulation simulates noise emissions and emissions to arrive at exposure values
Aggregation
Coming up: KPI Calculation
Energy: Based on vehicle consumption as a factor on the distance driven)
Congestion: Comparison of travel time of the population with and without delivery traffic added
Optional to be developed: Explicit simulation of lane-blocking behaviour due to deliveries
Coming up: Scenario dashboard
Caution: Current test results to exemplify the methodology. Model needs to be improved in multiple stages (see slide after).
Scenarios
Policy
Consolidation centers
Consolidation fleet
Demand
Validation
Traffic
Air quality
Deliveries
Gaps
Synthetic travel demand
Parcel demand
Parcel distribution
Route optimization
KPI calculation
Validation
Sendcloud survey is only a proxy. Ideally: Obtain data on use of parcel delivery operators through survey.
Gaps
Synthetic travel demand
Parcel demand
Parcel distribution
Route optimization
KPI calculation
Validation
Delivery center and fleet specifications are based on best guess information. Do we have more detailed data? (In progress for La Poste)
Gaps
Synthetic travel demand
Parcel demand
Parcel distribution
Route optimization
KPI calculation
Validation
Use heuristic optimization algorithm from JSprit instead of best-response assignment (currently running optimization)
Gaps
Synthetic travel demand
Parcel demand
Parcel distribution
Route optimization
KPI calculation
Validation
Emissions not detailed for the moment
Detailed Hbefa data set has been ordered
Gaps
Synthetic travel demand
Parcel demand
Parcel distribution
Route optimization
KPI calculation
Validation
Some KPIs need extensions for the simulation (lane-blocking through deliveries)
Gaps
Synthetic travel demand
Parcel demand
Parcel distribution
Route optimization
KPI calculation
Validation
Validation data needs to be assessed and integrated
General Freight Traffic
Synthetic population
"Freight population"
Simulation
Analysis
General Freight Traffic (FRETURB)
Synthetic population
FRETURB
Simulation
Analysis
General Freight Traffic (MASS-GT)
Synthetic population
MASS-GT
Simulation
Analysis
General Freight Traffic (MASS-GT)
Synthetic population
MASS-GT
Simulation
Analysis
MATSim + MASS-GT
Questions?