Sebastian Ordoñez-Soto
LHCb@LPCA group meeting
April 2nd, 2025
Sebastian Ordoñez-Soto
-
April 2nd, 2025
Sebastian Ordoñez-Soto
Selection of the signal |
Efficiency evaluation over the DP |
Background model |
Dalitz plot Fit |
Mass fit on data |
The analysis consists of mainly five stages, from the signal selection to the final Dalitz plot fit.
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
April 2nd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Done!
Inherited from the BF Analysis
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Done?
Latest "official" version is in progress
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
The fraction of each contribution in the \(B_{s}\) signal region are crucial for the AmAn.
Features of the temporary homemade mass fit
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Using Truth match MC for signal
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Using No Truth Match MC for signal
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Using No Truth Match MC for signal
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Using No Truth Match MC for signal
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Using No Truth Match MC for signal
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Current results from the BF analysis:
Results with the homemade fit:
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Done!
Done!
Done!
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
2018-DD
2018-LL
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
2017-DD
2017-LL
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
2016-DD
2016-LL
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
2015-DD
2015-LL
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Run 2 DD + LL categories merged
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Model from \(B_{d}^{0}\rightarrow K_{S}^{0}\pi^{-}\pi^{+}\) Run I analysis
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Solely physics \(\Rightarrow\) No efficiency
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Solely physics \(\Rightarrow\) No efficiency
March 24th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Physics + efficiency + vetoes
March 24th, 2025
2018-DD
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Physics + efficiency + vetoes
March 24th, 2025
2018-DD
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
March 24th, 2025
Summary of fractions for each component which are inputs for the Dalitz plot fit.
Combinatorial bkg. model
\(B_{d}^{0}\rightarrow K_{s}\pi\pi\) bkg. model
Using Truth match MC for signal
Using No Truth Match MC for signal
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Work in progress!
First fit with a simple (baseline) model.
Done!
April 2nd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Signal Model based on SM expectations
The preliminary results presented here include all the Run 2 data.
April 2nd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
April 2nd, 2025
The preliminary results presented here include all the Run 2 data.
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
April 2nd, 2025
The preliminary results presented here include all the Run 2 data.
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
April 2nd, 2025
The preliminary results presented here include all the Run 2 data.
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
April 2nd, 2025
The preliminary results presented here include all the Run 2 data.
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
In short, this is what we do at this stage:
It is crucial to determine the level of agreement between the fit PDF and the data from a statistical argument (null-hypothesis significance test) \(\Rightarrow\) a goodness-of-fit (g.o.f).
The unbinned Point-to-Point Dissimilarity Method will be used \(\Rightarrow\) event by event
How good are your fits? Unbinned multivariate goodness-of-fit tests in high energy physics: http://arxiv.org/abs/1006.3019
April 2nd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 19th, 2025
In short, this is what we do at this stage:
It is crucial to determine the level of agreement between the fit PDF and the data from a statistical argument (null-hypothesis significance test) \(\Rightarrow\) a goodness-of-fit (g.o.f).
We will use the unbinned Point-to-Point Dissimilarity Method.
You want to know whether two sets of points in phase space come from the same underlying distribution
The p-value is the probability of getting a test statistic TTT as large or larger than the observed one, under the null hypothesis.
“If the samples really come from the same distribution, how often would I get a dissimilarity as large as the one I observed, just due to chance?”
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Ideally, the difference between \(f\) and \(f_{0}\) could be estimated from the T statistic:
It is plausible to postulate a weighting function (WF) \(\psi(|\vec{s}-\vec{s}'|)\) which correlates the difference between the PDF's at different points, such that:
This can be approximated by:
The average kernel value between pairs of points if both are drawn from distribution fff
April 2nd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
The distribution of \(T\) for the case \(f = f_{0}\) is not known... How do we estimate a \(p\)-value?
April 2nd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
The \(p\)-value is a function of the data and MC, and is therefore itself a random variable
April 2nd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Run 1 procedure for B2KSpipi
April 2nd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 19th, 2025
Analysis
Sebastian Ordoñez-Soto
January 30th, 2025
Fractions during the installation
Fractions after optimisation
Sebastian Ordoñez-Soto
Analysis
January 30th, 2025
Sebastian Ordoñez-Soto
January 30th, 2025
Analysis
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
About the fits below:
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Run 2 DD merged
February 17th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2018 DD
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2017 DD
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2016 DD
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2015 DD
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Run 2 LL merged
February 17th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2018 LL
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2017 LL
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2016 LL
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2015 LL
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
Run 2 DD + LL categories merged
February 19th, 2025
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2018 DD + LL categories merged
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2017 DD + LL categories merged
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2016 DD + LL categories merged
Sebastian Ordoñez-Soto
AmAn of the \(B_{s}^{0}\rightarrow K_{S}^{0} \pi^{+}\pi^{-}\) decay
February 3rd, 2025
2015 DD + LL categories merged
S. Ordonez-Soto
December 16th, 2024
Introduction
S. Ordonez-Soto
December 16th, 2024
Dalitz plot analysis of \(B_{s}^{0}\rightarrow K_{S}^{0}\pi^{+}\pi^{-}\)
\(B_{s}\rightarrow K_{S}^{0}\pi^{-}\pi^{+}\) phase space
Using the Dalitz plot variables to describe the B0→K0π+π−B^0 \to K^0 \pi^+ \pi^-Bs2KSpipi decay, the partial decay rate is given by:
To describe the kinematic and dynamics of 3-body decays, the analysis employs the Dalitz plot formalism.
S. Ordonez-Soto
December 16th, 2024
Dalitz plot analysis of \(B_{s}^{0}\rightarrow K_{S}^{0}\pi^{+}\pi^{-}\)
The boundaries of the B0→K0π+π−B^0 \to K^0 \pi^+ \pi^-DP are crucial, as most interference effects between amplitudes involving intermediate resonances occur in these regions.
S. Ordonez-Soto
December 16th, 2024
After integration over time:
Finally, with \(r_{\text{tag}}=0\) the Dalitz signal PDF becomes simply:
Dalitz plot analysis of \(B_{s}^{0}\rightarrow K_{S}^{0}\pi^{+}\pi^{-}\)
The time and DP dependent signal PDF accounting for the transitions \(\mathcal{A}_{f} = \langle f|H_{\Delta F=1}|B_{s}^{0}\rangle\) and \(\bar{\mathcal{A}}_{f} = \langle f|H_{\Delta F=1}|\bar{B}_{s}^{0}\rangle\) reads:
S. Ordonez-Soto
December 16th, 2024
The total amplitude is approximated as a coherent sum of terms:
The spin-dependent dynamical function is rewritten as:
Dalitz plot analysis of \(B_{s}^{0}\rightarrow K_{S}^{0}\pi^{+}\pi^{-}\)
RBW
GS
Flatté
LASS
S. Ordonez-Soto
December 16th, 2024
The signal Dalitz plot PDF in this framework is then given by:
The total Dalitz plot PDF is written as:
with \(f_{\text{sig}} + \sum_{i} f_{\text{bkg}_{i}} = 1\). Three main components of the PDF are clearly distinguished:
Dalitz plot analysis of \(B_{s}^{0}\rightarrow K_{S}^{0}\pi^{+}\pi^{-}\)
S. Ordonez-Soto
December 16th, 2024
Dalitz plot analysis of \(B_{s}^{0}\rightarrow K_{S}^{0}\pi^{+}\pi^{-}\)
A fit to data allows to measure the isobar parameters, i.e., the relative magnitudes of the isobar amplitude
From there, the direct CP asymmetry for an amplitude \(j\) can be derived:
The fit fraction of a given amplitude is obtained also as result from the fit:
S. Ordonez-Soto
December 16th, 2024
The analysis strategy is summarized in the following steps:
Analysis strategy
S. Ordonez-Soto
December 16th, 2024
LL
Invariant mass fit corresponding to \(B_{s}^{0}\rightarrow K_{S}^{0}\pi^{+}\pi^{-}\) 2018 data
Analysis strategy
\(B_{s}^{0}\rightarrow K_{S}^{0}\pi^{+}\pi^{-}\) Dalitz plot considering only data within the signal window
S. Ordonez-Soto
December 16th, 2024
Analysis strategy
DD
LL
S. Ordonez-Soto
December 16th, 2024
Analysis strategy
DD
LL
S. Ordonez-Soto
December 16th, 2024
Analysis strategy
It is clear that the most relevant source of bkg. within the signal window is the combinatorial bkg.
One of the challenges in this analysis is the modeling of other sources of background, primarily from the B2KSpipi signal tail, which, although small, is not negligible.
S. Ordonez-Soto
December 16th, 2024
Analysis strategy
The efficiency of signal events is affected by selection cuts, geometrical acceptance, and trigger efficiency, leading to non-uniform event distribution across the Dalitz plane.
This efficiency is determined by using MC samples with appropriate corrections, e.g., PIDcorr.
LL
DD
Efficiency maps \(\epsilon(s_{+},s_{-})\) used as input for the Dalitz plot fit
S. Ordonez-Soto
December 16th, 2024
Analysis strategy
First attempt with signal decay model based on SM expectations, then add potential contributions and decide based on s statistical test.
Clermont Root-based Amplitude Fitter Tool
subWG Kshh
Sebastian Ordoñez-Soto
February 24th, 2025
if (dkmode == "KK") {
cut += "h1_PROBNNp" + cut_name + "< 0.5";
cut += "h2_PROBNNp" + cut_name + "< 0.5";
if (year == "2018"){
cut += "Topo_xgb > 0.95";
cut += "PID_xgb_Bs2KKKS > 0.985";
}
} else {
cut += "h1_PROBNNp" + cut_name + "< 0.9";
cut += "h2_PROBNNp" + cut_name + "< 0.9";
}
if (dkmode == "KK") {
cut += "h1_PROBNNp" + cut_name + "< 0.9";
cut += "h2_PROBNNp" + cut_name + "< 0.9";
if (year == "2018"){
cut += "Topo_xgb > 0.95";
cut += "PID_xgb_Bs2KKKS > 0.985";
}
} else {
cut += "h1_PROBNNp" + cut_name + "< 0.9";
cut += "h2_PROBNNp" + cut_name + "< 0.9";
}
Previous selection \(\epsilon_{0.9}\)
Current selection \(\epsilon_{0.5}\)
subWG Kshh
Sebastian Ordoñez-Soto
February 24th, 2025
subWG Kshh
Sebastian Ordoñez-Soto
February 24th, 2025
subWG Kshh
Sebastian Ordoñez-Soto
February 24th, 2025
subWG Kshh
Sebastian Ordoñez-Soto
February 24th, 2025
subWG Kshh
Sebastian Ordoñez-Soto
February 24th, 2025
subWG Kshh
Sebastian Ordoñez-Soto
February 24th, 2025
subWG Kshh
Sebastian Ordoñez-Soto
February 24th, 2025