EIGHTIES
14e Rencontres Théoquant, Besançon, 6 Février 2019
Clémentine COTTINEAU, CNRS, Centre Maurice Halbwachs
Julien PERRET, Univ. Paris-Est, LaSTIG STRUDEL, IGN, ENSG / Institut des Systèmes Complexes
Romain REUILLON, CNRS, Institut des Systèmes Complexes / Géographie-cités
Sébastien REY-COYREHOURCQ, Université de Rouen, IDEES
Julie VALLÉE, CNRS, Géographie-cités
2015-2019
Chercheurs nés dans les années 1980...
Points communs:
L'impact de la ségrégation
sur les comportements de santé
Par exemple:
> La consommation de 5 fruits & légumes
> En Ile-de-France avant et après la campagne de communication autour de la nutrition
Résultats convergents sur les disparités sociales de consommation
J Am Diet Assoc. (2008)
J Am Diet Assoc (2010)
Campagnes nationales de sensibilisation
exemple. Programme National Nutrition Santé (PNNS) en France depuis 2001
Concentration spatiale des populations avec les mêmes comportements de santé
Par exemple:
> Le taux d'obésité, de fumeurs...
L'espace comme producteur de disparités dans les comportements de santés
Par exemple:
> Accessibilité des services, normes
Vallée J, 2017. Challenges in targeting areas for public action. Target areas at the right place and at the right time. Journal of Epidemiology and Community Health. Vol 71 No 10, 945-946. {10.1136/jech-2017-209197}.
> En termes de représentation des différents groupes
> Relativement aux caractéristiques des quartiers eux-mêmes (eg., offre de service)
> Relativement aux multiples expositions des présents et des mobiles (socialement différenciées)
Concentration inégale des groupes sociaux dans la ville
Au lieu de travail,
au lieu de résidence,
durant les activités de loisirs...
En quoi la ségrégation spatiale des urbains
au cours de la journée modifie-t-elle les phénomènes de diffusion
de comportements de santé?
Explorer les effets de la ségrégation spatio-temporelle sur les inégalités sociales dans les comportements alimentaires
Les inégalités sociales dans le fait de manger 5 fruits/légumes par jour sont-elles plus importantes ...
... lorsque les lieux de résidences sont spatialement ségrégés selon le groupe social plutôt que répartis aléatoirement ?
... lorsque les lieux d'activité sont considérés en plus des lieux de résidence ?
> Effets de quartiers sont difficiles à mesurer car
(1) individus se sélectionnent ex-ante vers des lieux de résidence
(2) ne vivent qu'une fois!
(3) les quartiers changent au cours du temps
> Hétérogénéité des acteurs et des échelles
> Travaux sur les modèles agents dans la simulation des effets de la ségrégation sur les disparités sociales de nutrition (scenarios "jouets")
SSM - Population Health (2016)
Am J Prev Med (2011)
> Travaux sur les modèles agents dans la simulation des effets spatiaux sur les disparités sociales de santé en général
Agents localisés, dotés de règles d'action individuelles, capables de percevoir leur environnement et d'agir en conséquence
Keep it Simple
[Auchincloss et al., 2011]
[Nagel, Auxhausen et al.]
Keep it Descriptive
Explorer les effets de la ségrégation spatio-temporelle (et de sa représentation dans le modèle) sur les inégalités sociales d'alimentation simulées
Les inégalités sociales sont-elles plus importantes...
Lorsque les lieux de résidences sont spatialement ségrégés selon le groupe social plutôt que répartis aléatoirement ?
Lorsque les lieux d'activité sont considérés en plus des lieux de résidence ?
| Scénario 1 | Scénario 2 | Scénario 3 | Scénario 4 | Scénario 5 | |
|---|---|---|---|---|---|
| Résidence | Aléatoire | Aléatoire | Observée | Observée | Observée | 
| Mobilité | / | Aléatoire | / | Aléatoire | Observée | 
géographie
réaliste
modèle ordinaire
Alimentation
Mobilité spatio-temporelle
appariées selon 18 groupes sociodémographiques
Nuit (ie. résidence) : recensement 2012
Matin et Après-midi : enquête EGT 2010 (OD)
Baromètres Santé Nutrition
(2002 ; 2008)
Sexe (homme ; femme)
X
Age (15-29 ans ; 30-59 ans ; 60 ans et +)
X
Éducation (< Bac. ; Bac – Bac+2; > Bac+2)
Les opinions et comportements alimentaires des agents sont définis à l'initialisation en fonction de la distribution statistique dans leur groupe sociodémographique
8,16 millions d'agents
Définition Spatiale
8540 carreaux habités (1km X 1km)
Agents
dans des carreaux jour/aprem/nuit
avec attributs sociodémographiques
68 % carreaux 'jour' ≠ carreau 'nuit'
Ile-de-France
2002-2008
Source : Baromètres Santé Nutrition (2002 ; 2008)
2002
% healthy
Scenarios 1 & 3:
1 cellule/IRIS par jour
Scenarios 2, 4 & 5:
3 cellules/IRIS par jour
Interactions spatiales
Modélisation du changement d'opinion
Modélisation du changement de comportement sous contraintes
| Paramètre | Mécanisme | Etendue | si min | si max | Influence sur 5-a-day | 
|---|---|---|---|---|---|
| 1-to- 1 Interaction | Spatial Interaction | [ 0 ; 1 ] | Observation dans l'IRIS uniquement | Influence du partenaire uniquement | |
| Reward | Behaviour-Opinion | [ 0 ; 1 ] | Pas de rétroaction du comportement | Le comportement 'sain' renforce l'opinion | |
| Inertia | Opinion-Behaviour | [ 0 ; 1 ] | Opinion dépend des autres | Opinion stable | |
| Switch Proba | Opinion-Behaviour | [ 0 ; 1 ] | Pas de changement | Le comportement suit l'opinion | |
| Constraint | Opinion-Behaviour | [ 0 ; 1 ] | Changements de comportement sans contrainte | Les contraintes empêchent les changements de comportement | 
+
+
?
?
?
OpenMOLE
en utilisant les algorithmes génétiques et le calcul distribué
Reproduire la situation finale 2008
> en termes de % consommateurs 'sains'
> en termes d'inégalités sociales de consommation
Calibrage pour minimiser distances aux objectifs
Et comparaison avec les données
Distance aux données
Obs. 1 : Consommation 'saine'
2002
2008
steps
années
3 tranches
simulation
données
Obs. 2 : Inégalité sociale de consommation
for each category
of age ( i ) & sex ( j )
ratio between more (3) &
less (1) educated
weighted
by sex & age category
mesure inequality between extreme education groups at equal age and sex category
2008
Analyse
| Parameter | Mechanism | Duo 1 | 
|---|---|---|
| 1-to-1 Interaction | Spatial Interaction | 0.24 | 
| Reward | Behaviour-Opinion | 0.27 | 
| Inertia | Opinion-Behaviour | 0.67 | 
| Max Switch Proba | Opinion-Behaviour | 1 | 
| Constraint | Opinion-Behaviour | 0.12 | 
duo1
scénario 5
scénario 1
3
2
4
Distribution des valeurs de Social Inequality par scénario
géographie
(résid. & mob.) réaliste
| Scénario 1 | Scénario 2 | Scénario 3 | Scénario 4 | Scénario 5 | |
|---|---|---|---|---|---|
| Résidence | Aléatoire | Aléatoire | Observée | Observée | Observée | 
| Mobilité | / | Aléatoire | / | Aléatoire | Observée | 
10 000 réplications par scénario
scénario 5
scénario 1
3
2
4
Distribution des valeurs de SocialInequality par scénario
| Scénario 1 | Scénario 2 | Scénario 3 | Scénario 4 | Scénario 5 | |
|---|---|---|---|---|---|
| Résidence | Aléatoire | Aléatoire | Observée | Observée | Observée | 
| Mobilité | / | Aléatoire | / | Aléatoire | Observée | 
Des inégalités sociales de consommations simulées plus faibles avec une localisation résidentielle aléatoire vs. observée
résidence
aléatoire
résidence
observée
scénario 5
scénario 1
3
2
4
Distribution des valeurs de SocialInequality par scénario
| Scénario 1 | Scénario 2 | Scénario 3 | Scénario 4 | Scénario 5 | |
|---|---|---|---|---|---|
| Résidence | Aléatoire | Aléatoire | Observée | Observée | Observée | 
| Mobilité | / | Aléatoire | / | Aléatoire | Observée | 
Des inégalités sociales de consommations simulées plus faibles avec une mobilité aléatoire
et plus fortes sans mobilité
géographie
(résid. & mob.) réaliste
social Inequality simulée diminue alors qu'elle augmente dans les données
| observée (2002) : 1,42 | initialisation : 1,42 | 
| observée (2008) : 1,60 | simulée (médiane) : 1,39 | 
| observée (2002) : 12,0% | initialisation : 12,0% | 
| observée (2008) : 14,3% | simulée (médiane) : 13,6% | 
Retravailler le modèle de changement d'opinion/comportement
- diffusion biaisée selon catégorie sociodémographique
- diffusion généralisée par compagnes publiques de promotion
- récompense socialement différenciée / adhésion au discours public
% consommation 5+ simulé n'augmente pas autant que dans les données
Approche innovante en géographie sociale et de la santé
Estimation du rôle de la ségrégation résidentielle et temporelle dans les vitesses différentiées de diffusions
Mais encore imparfait. A suivre...
Clémentine COTTINEAU, CNRS, Centre Maurice Halbwachs
Julien PERRET, IGN, LaSTIG
Romain REUILLON, CNRS, Institut des Systèmes Complexes / Géographie-cités
Sébastien REY-COYREHOURCQ, Université de Rouen, IDEES
Julie VALLÉE, CNRS, Géographie-cités
Slides : https://slides.com/sebastienreycoyrehourcq/deck-18-24/
Dépôt : https://gitlab.iscpif.fr/eighties/h24/
Une ségrégation qui augmente en journée selon l'âge et le sexe mais qui baisse selon l'éducation
if i is unhealthy at time t
otherwise
if i is unhealthy at time t
if i is healthy at time t
Free parameter
= number of constraints of agent i
= agent
= interacting partner
= cell
= switch probability
Obs. 1 : Consommation 'saine'
Obs. 2 : Inégalité sociale de consommation
Pour chaque catégorie d'age (i) et de sexe (j)
ratio entre les plus (=3) et les moins (=1) éduqués
pondération selon la distribution par age et sexe
Mesure d'inégalité de consommation entre les groupes extrêmes d'éducation à âge et sexe égal