a
b
\(x\)
\(f_X(x)\)
Probability of observing \(B\) given \(A\) has been observed.
\(A\)
\(\bar{A}\)
\(\mathrm{P}(A)\)
\(\mathrm{P}(\bar{A})\)
\(\mathrm{P}(B\mid A)\)
\(\mathrm{P}(\bar{B}\mid A)\)
\(\mathrm{P}(B\mid \bar{A})\)
\(A \cap \bar{B}\)
\(A \cap B\)
\(\bar{A} \cap \bar{B}\)
\(\bar{A} \cap B\)
\(\mathrm{P}(\bar{B}\mid A)\)
or
Probability of observing \(B\) given \(A\) has been observed, in terms of the probability of observing \(A\) if \(B\) is observed.
Probability as a measure of "degree of belief".
Likelihood
Prior
Observed data
Likelihood
Prior
Observed data
A flat prior encodes the belief that all possible values of a parameter (perhaps within a range) are equally plausible.
a
b
\(x\)
\(f_X(x)\)
Altitude\(\quad\theta \sim \mathrm{Uniform}[-90^\circ, +90^\circ]\)
Azimuth\(\quad\phi \sim \mathrm{Uniform}[-180^\circ,+180^\circ]\)
Source: Wikimedia
Altitude\(\quad\theta \sim \arccos(u),\quad u \sim \mathrm{Uniform}[-1, +1]\)
Azimuth\(\quad\phi \sim \mathrm{Uniform}[-180^\circ,+180^\circ]\)
Source: Wikipedia
Source: Wikimedia
Source: Tak et al. (2024)
Text
Not the same!
Tak, Hyungsuk, Yang Chen, Vinay L. Kashyap, et al. (2024) “Six Maxims of Statistical Acumen for Astronomical Data Analysis.” The Astrophysical Journal Supplement Series 275, no. 2 (2024): 30. https://doi.org/10.3847/1538-4365/ad8440.
Dogucu, Mine, Alicia A. Johnson, Miles Q. Ott (2021). Bayes Rules! An Introduction to Applied Bayesian Modeling. https://www.bayesrulesbook.com/.
Harold Jeffreys; An invariant form for the prior probability in estimation problems. Proc. A 1 September 1946; 186 (1007): 453–461. https://doi.org/10.1098/rspa.1946.0056