The (Symplectic) Geometry of Spaces of Frames

Clayton Shonkwiler

Colorado State University

shonkwiler.org

/sissa21

this talk!

Signal Analysis

Signal: \(v \in \mathbb{C}^d\)

Design: Choose \(f_1, \dots , f_n \in \mathbb{C}^d\)

Measurements: \(\langle f_1, v \rangle, \dots , \langle f_n, v \rangle \).

Goal: Reconstruct the signal \(v\) from \(F^* v\)

If \(F = \begin{bmatrix} f_1 & \cdots & f_n\end{bmatrix}\), the measurement vector is \(F^*v\).

Orthonormal Bases

If \(f_1,\dots , f_d\in \mathbb{C}^d\) form an orthonormal basis, then

\(v=\sum \langle f_k,v\rangle f_k = FF^* v\).

\(\Leftrightarrow FF^* = \mathrm{Id}_{d \times d}\)

This is fragile! What if a measurement gets lost?

Definition.

\(\{f_1,\dots, f_n\}\subset \mathbb{C}^d\) is a Parseval frame if \(\operatorname{Id}_{d\times d}=FF^*=f_1f_1^*+\dots+f_nf_n^*\).

The rows of \(F\) form an orthonormal set in \(\mathbb{C}^n\), so the space of all length-\(n\) Parseval frames in \(\mathbb{C}^d\) is the Stiefel manifold \(\operatorname{St}_d(\mathbb{C}^n)\).

real subvariety of \(\mathbb{C}^{d \times n}\)

Dealing with Erasures

Lost measurements are still a problem:

\(F=\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}\)

An equal-norm Parseval frame (ENP frame) is a Parseval frame \(f_1,\dots , f_n\) with \(\|f_i\|^2=\|f_j\|^2\) for all \(i\) and \(j\).

Theorem [Casazza–Kovačevic, Goyal–Kovačevic–Kelner, Holmes–Paulsen]

ENP frames are optimal for signal reconstruction in the presence of additive white Gaussian noise and erasures.

real condition

\(\sum \|f_i\|^2=\operatorname{tr}F^*F=\operatorname{tr}FF^*=\operatorname{tr}\operatorname{Id}_{d \times d} = d\), so each \(\|f_i\|^2=\frac{d}{n}\).

Generalizations

More generally, we may want to consider

  1. frames with fixed frame vector norms: \(\|f_i\|^2=r_i\) for specified \(r_i>0\)
  2. frames with \(FF^*=S\) for specified positive-definite, Hermitian \(S\)

real conditions

The spaces of frames satisfying 1, 2, or both are only real subvarieties of \(\mathbb{C}^{d \times n}\).

Some Questions

The Frame Homotopy Conjecture [Larsen, 2002]

The space of ENP frames is path-connected.

Proved by Cahill–Mixon–Strawn in 2017.

Generalized Frame Homotopy Conjecture

For given positive-definite, Hermitian \(S\) and \(r_1,\dots , r_n>0\), the space of frames with \(FF^*=S\) and \(\|f_i\|^2=r_i\) is path-connected.

Genericity of Full Spark Frames

With probability 1, a random ENP frame has full spark—meaning every size-\(d\) subset of the \(f_i\) spans \(\mathbb{C}^d\).

frame with fixed \(FF^*\) and fixed \(\|f_1\|^2,\dots, \|f_n\|^2\)

Objects of Interest

We are interested in \(F=\begin{bmatrix}f_1 & f_2 & \cdots & f_n\end{bmatrix}\in \mathbb{C}^{d \times n}\) with

\(FF^* = S\)

and/or

\(\|f_1\|^2=r_1, \dots , \|f_n\|^2=r_n\).

Symplectic Geometry

Definition. A symplectic manifold is a smooth manifold \(M\) together with a closed, non-degenerate 2-form \({\omega \in \Omega^2(M)}\).

\((S^2,d\theta\wedge dz)\)

\((\mathbb{R}^2,dx \wedge dy) = (\mathbb{C},\frac{i}{2}dz \wedge d\bar{z})\)

\((S^2,\omega)\), where \(\omega_p(u,v) = (u \times v) \cdot p\)

\((\mathbb{R}^2,\omega)\) where \(\omega(u,v) = \langle i u, v \rangle \)

\((\mathbb{C}^n, \frac{i}{2} \sum dz_k \wedge d\overline{z}_k)\)

dx \wedge dy \left( a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y}, c \frac{\partial }{\partial x} + d \frac{\partial}{\partial y} \right) = ad - bc

\((\mathbb{C}^{d \times N}, \omega)\) with \(\omega(X_1,X_2) = -\operatorname{Im} \operatorname{trace}(X_1^* X_2)\).

The name ‘complex group’ formerly proposed by me…has become more and more embarrassing through collision with the word ‘complex’ in the connotation of complex number. I therefore propose to replace it by the corresponding Greek adjective ‘symplectic’.

— Hermann Weyl

Volume

\(\omega^{\wedge n} = \omega \wedge \dots \wedge \omega\) is a volume form on \(M\), and induces a measure

m(U) := \int_U \omega^{\wedge n}

called Liouville measure on \(M\).

If \(M\) is compact, this can be normalized to give a probability measure.

Functions and Symplectic Gradients

If \(H: M \to \mathbb{R}\) is smooth, then there exists a unique vector field \(X_H\) so that \({dH = \iota_{X_H}\omega}\), i.e.,

dH(\cdot) = \omega(X_H, \cdot)

(\(X_H\) is the Hamiltonian vector field for \(H\) or the symplectic gradient of \(H\))

Example. \(H: (S^2, d\theta\wedge dz) \to \mathbb{R}\) given by \(H(\theta,z) = z\).

\(dH = dz = \iota_{\frac{\partial}{\partial \theta}}(d\theta\wedge dz)\), so \(X_H = \frac{\partial}{\partial \theta}\).

\(H\) is constant on orbits of \(X_H\):

\(\mathcal{L}_{X_H}(H) = dH(X_H)=\omega(X_H,X_H) = 0\)

Lie Group Actions

\(S^1=U(1)\) acts on \((S^2,d\theta \wedge dz)\) by

e^{it} \cdot(\theta, z) = (\theta + t, z).

For \(r \in \mathbb{R} \simeq \mathfrak{u}(1)\), \(X_r = r\frac{\partial}{\partial \theta}\).

Let \(G\) be a Lie group, and let \(\mathfrak{g}\) be its Lie algebra. If \(G\) acts on \((M,\omega)\), then each \(V \in \mathfrak{g}\) determines a vector field \(X_V\) on \(M\) by

X_V(p) = \left.\frac{d}{dt}\right|_{t=0}\exp(t V) \cdot p

Lie Group Actions

Let \(G\) be a Lie group, and let \(\mathfrak{g}\) be its Lie algebra. If \(G\) acts on \((M,\omega)\), then each \(V \in \mathfrak{g}\) determines a vector field \(X_V\) on \(M\) by

X_V(p) = \left.\frac{d}{dt}\right|_{t=0}\exp(t V) \cdot p

\(SO(3)\) acts on \(S^2\) by rotations.

\(= (a,b,c) \times (x,y,z)\)

For \(V_{(a,b,c)} = \begin{bmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{bmatrix} \in \mathfrak{so}(3)\),

\(X_{V_{(a,b,c)}}((x,y,z))\)

\(= (bz-cy)\frac{\partial}{\partial x} + (cx - az) \frac{\partial}{\partial y}  +(ay - bx) \frac{\partial}{\partial z}\)

Symmetries and Conserved Quantities

Definition. A \(U(1)\) action on \((M,\omega)\) is Hamiltonian if there exists a map

\mu: M \to \mathbb{R} \simeq \mathfrak{u}(1)^*

so that \(d\mu = \iota_{X}\omega = \omega(X,\cdot)\), where \(X\) is the vector field generated by the action.

\(X = \frac{\partial}{\partial \theta}\)

\(\mu(\theta,z) = z\)

\(\iota_X\omega = \iota_{\frac{\partial}{\partial \theta}} d\theta \wedge dz = dz \)

Moment Maps

Definition. An action of \(G\) on \((M,\omega)\) is Hamiltonian if each one-parameter subgroup action is Hamiltonian. Equivalently, there exists a map

\mu: M \to \mathfrak{g}^*

so that \(\omega_p(X_V, X) = D_p \mu(X)(V)\) for each \(p \in M\), \(X \in T_pM\), and \(V \in \mathfrak{g}\).

\(X_{V_{(a,b,c)}}(x,y,z) = (a,b,c) \times (x,y,z)\)

\((\iota_{X_{V_{(a,b,c)}}}\omega)_{(x,y,z)} = a dx + b dy + c dz \)

\(\mu(x,y,z)(V_{(a,b,c)}) = (x,y,z)\cdot(a,b,c)\)

Key Tools

Theorem [Atiyah, Guillemin–Sternberg

Let \((M^{2n},\omega)\) be a compact connected symplectic manifold with a Hamiltonian \(k\)-torus action with momentum map \(\mu: M \to \mathbb{R}^k\). Then

  • the nonempty level sets of \(\mu\) are connected;
  • the image of \(\mu\) is convex (called the moment polytope);
  • the image of \(\mu\) is the convex hull of the images of fixed points of the action.

Key Tools

Theorem [Atiyah, Guillemin–Sternberg

Let \((M^{2n},\omega)\) be a compact connected symplectic manifold with a Hamiltonian \(k\)-torus action with momentum map \(\mu: M \to \mathbb{R}^k\). Then

  • the nonempty level sets of \(\mu\) are connected;
  • the image of \(\mu\) is convex (called the moment polytope);
  • the image of \(\mu\) is the convex hull of the images of fixed points of the action.

\(U(1)^2\) acts on \(\mathbb{CP}^2\) by

\((e^{i\theta_1},e^{i\theta_2})\cdot [z_0:z_1:z_1]:=[z_1:e^{i\theta_1}z_1:e^{i\theta_2}z_2]\)

 

Moment map:

\(\mu([z_0:z_1:z_2]=-\frac{1}{2(|z_0|^2+|z_1|^2+|z_2|^2)}(|z_1|^2,|z_2|^2)\)

\((0,0)=\mu([1:0:0])\)

\((-\frac{1}{2},0)=\mu([0:1:0])\)

\((0,-\frac{1}{2})=\mu([0:0:1])\)

Theorem [Duistermaat–Heckman]

If \(k=n\), then the pushforward of Liouville measure to the moment polytope is a constant multiple of Lebesgue measure.

Symplectic Reduction

Theorem [Meyer, Marsden–Weinstein]

Let \(\mu: M \to \mathfrak{g}^*\) be the moment map for a Hamiltonian action of \(G\) on \((M,\omega)\). If \(\xi \in \mathfrak{g}^*\) is a regular value of \(\mu\) and \(\mathcal{O}_\xi\) is its coadjoint orbit, then

M //_\xi\, G := \mu^{-1}(\mathcal{O}_\xi)/G

is a symplectic manifold with symplectic form \(\omega_{\text{red}}\) such that

\pi^*\omega_{\text{red}} = \iota^* \omega

\(\mu^{-1}(\mathcal{O}_\xi)\)

\(M //_\xi\, G = \mu^{-1}(\mathcal{O}_\xi)/G\)

\(M\)

\(\pi\)

\(\iota\)

A Circle Action on \(\mathbb{C}^d\)

Let \(U(1)\) act on \((\mathbb{C}^d,\omega_{\text{std}})\) by \(e^{it}\cdot \vec{v} = e^{it} \vec{v} \). The associated vector field is

X(\vec{v}) = \left. \frac{d}{dt}\right|_{t=0} e^{it}\vec{v} = i\vec{v},

so \((\iota_X\omega_{\text{std}})_{\vec{v}}(Y) = (\omega_{\text{std}})_{\vec{v}}(X,Y) = \langle iX,Y\rangle_{\vec{v}} = \langle -\vec{v},Y\rangle\).

The moment map is

\mu: \mathbb{C}^d \to \mathfrak{u}(1)^* \simeq \mathbb{R}
\vec{v} \mapsto -\frac{1}{2} \left| \vec{v}\right|^2

since \(d\mu_{\vec{v}}(Y) = \left.\frac{d}{dt}\right|_{t=0} \left(-\frac{1}{2} \langle \vec{v} + tY, \vec{v} + tY\rangle\right) = \langle -\vec{v},Y\rangle\).

The symplectic reduction over \(-\frac{1}{2} \in \mathbb{R}\) is

\(\mathbb{C}^d//_{-\frac{1}{2}} U(1) = \mu^{-1}\left(-\frac{1}{2}\right)\!/U(1) \simeq \mathbb{CP}^{d-1}\).

Group Actions on Frames

What compact Lie groups act nicely on \(\mathbb{C}^{d \times n}\)?

  1. \(U(d)\) acts on the left
  2. \(U(n)\) acts on the right
  3. \(U(1)^d\) acts on the left
  4. \(U(1)^n\) acts on the right
\mu_{U(d)}(F) = FF^*
\mu_{U(n)}(F) = -F^*F
\mu_{U(1)^d}\left(\begin{bmatrix} \rule[.8mm]{4mm}{.5px}\, f^1 \rule[.8mm]{4mm}{.5px}\\ \vdots \\ \rule[.8mm]{4mm}{.5px}\, f^d \rule[.8mm]{4mm}{.5px} \end{bmatrix}\right) = \left(\frac{1}{2}\|f^1\|^2 , \dots , \frac{1}{2}\|f^d\|^2\right)
\mu_{U(1)^n} \left(\begin{bmatrix} f_1 & \cdots & f_n \end{bmatrix}\right) = \left(-\frac{1}{2}\|f_1\|^2 , \dots , -\frac{1}{2}\|f_n\|^2\right)

Parseval frames

\(\mu_{U(d)}^{-1}(\operatorname{Id}_{d \times d})\)

fixed-norm frames

\(\mu_{U(1)^N}^{-1}\left(-\frac{r_1}{2},\dots , -\frac{r_n}{2}\right)\)

Parseval Frames and a Grassmannian

\(\mu_{U(d)}(F)=FF^*\), so 

\(\mathbb{C}^{d \times n}//_{\operatorname{Id}_{d \times d}} U(d)\)

\(= \operatorname{St}_d(\mathbb{C}^n)/U(d)\)

\(= \mu_{U(d)}^{-1}(\operatorname{Id}_{d \times d})/U(d)\)

\(=\operatorname{Gr}_d(\mathbb{C}^n)\)

Theorem [Atiyah, Guillemin–Sternberg

Let \((M^{2n},\omega)\) be a compact connected symplectic manifold with a Hamiltonian \(k\)-torus action with momentum map \(\mu: M \to \mathbb{R}^k\). Then

  • the nonempty level sets of \(\mu\) are connected;

The Generalized Frame Homotopy Conjecture

Theorem [with Needham, ’21]

Let \(S\) be Hermitian and positive-definite and \(r_1,\dots , r_n > 0\). The space of frames with \(FF^*=S\) and \(\|f_1\|^2=r_1,\dots , \|f_n\|^2=r_n\) is either empty or path-connected.

(the non-emptiness condition is explicit and known)

Eigensteps

\begin{array}{ccccccccccc} 1&{}&1&{}&1&{}&0&{}&0&{}&0\\ {}&\lambda_{51}&{}&\lambda_{52}&{}&\lambda_{53}&{}&0&{}&0&{}\\ {}&{}&\lambda_{41}&{}&\lambda_{42}&{}&\lambda_{43}&{}&0&{}&{}\\ {}&{}&{}&\lambda_{31}&{}&\lambda_{32}&{}&\lambda_{33}&{}&{}&{}\\ {}&{}&{}&{}&\lambda_{21}&{}&\lambda_{22}&{}&{}&{}&{}\\ {}&{}&{}&{}&{}&\frac{3}{6}&{}&{}&{}&{}&{} \end{array}

Example for ENP frames with \(N=6, d=3\):

\begin{array}{c} \sum_j \lambda_{6j} = 3\\ \sum_j \lambda_{5j} = \frac{5}{2}\\ \sum_j \lambda_{4j} = 2\\ \sum_j \lambda_{3j} = \frac{3}{2}\\ \sum_j \lambda_{2j} = 1\\ {} \end{array}

The eigensteps of a frame \(F = \begin{bmatrix}f_1 & \cdots & f_n\end{bmatrix}\) are the eigenvalues \(\lambda_{kj}\) of the partial frame operators

F_k := f_1 f_1^* + \dots + f_k f_k^*.

Must satisfy \(\ldots \geq \lambda_{i,j} \geq \lambda_{i-1,j} \geq \lambda_{i,j+1} \geq \dots\)

Proposition [with Needham; cf. Flaschka–Millson]

The eigensteps of an ENP frame are coordinates of the moment map associated to a maximal torus action on (an open, dense subset of a quotient of) ENP frame space.

Corollary [using Duistermaat–Heckman]

The eigensteps of random ENP frames are distributed according to Lebesgue measure on the eigenstep polytope.

Some Results

Proposition [with Needham; cf. Flaschka–Millson]

The eigensteps of an ENP frame are coordinates of the moment map associated to a maximal torus action on ENP frame space.

\(\phi_1 \phi_1^* - \frac{1}{d}I_d\)

\(\phi_2 \phi_2^* - \frac{1}{d}I_d\)

\(\phi_3 \phi_3^* - \frac{1}{d}I_d\)

\(\phi_4 \phi_4^* - \frac{1}{d}I_d\)

\(\phi_5 \phi_5^* - \frac{1}{d}I_d\)

\(\phi_6 \phi_6^* - \frac{1}{d}I_d\)

\(\lambda_{2j}\)

\(\lambda_{3j}\)

\(\lambda_{4j}\)

Example

\begin{array}{cccccc} 1&{}&1&{}&{}&{}\\ {}&1&{}&\lambda_{42}&{}&{}\\ {}&{}&\lambda_{31}&{}&\lambda_{32}&{}\\ {}&{}&{}&\lambda_{21}&{}&\lambda_{22}\\ {}&{}&{}&{}&\frac{2}{5}&{} \end{array}
\begin{array}{c} \sum_j \lambda_{5j} = 2\\ \sum_j \lambda_{4j} = \frac{8}{5}\\ \sum_j \lambda_{3j} = \frac{6}{5}\\ \sum_j \lambda_{2j} = \frac{4}{5}\\ {} \end{array}
\begin{array}{cccccc} 1&{}&1&{}&{}&{}\\ {}&1&{}&\frac{3}{5}&{}&{}\\ {}&{}&\lambda_{31}&{}&\frac{6}{5}-\lambda_{31}&{}\\ {}&{}&{}&\lambda_{21}&{}&\frac{4}{5}-\lambda_{21}\\ {}&{}&{}&{}&\frac{2}{5}&{} \end{array}

\(d=2,n=5\)

Genericity of Full Spark Frames

Proof sketch

The first \(d\) columns of \(F\) fail to be full spark only if

\(f_1f_1^*+\dots+f_df_d^*\)

has a zero eigenvalue; i.e., \(\lambda_{dd}=0\).

This is the fiber over a facet of the eigenstep polytope, and hence has measure zero.

By permutation invariance of the measure, the same is true for any \(d\) columns.

Theorem* [with Needham]

The spark-deficient frames have measure zero inside the space of ENP frames.

Similarly for any space with fixed \(FF^*\) and \(\|f_1\|^2,\dots,\|f_n\|^2\).

Questions

Real Frames. The symplectic machinery only seems to apply to complex frames; is there some analogous story for frames in \(\mathbb{R}^d\)?

Symplectic reductions correspond to GIT quotients; e.g.,

\(\mathbb{C}^{d \times n}/\!/\!_{\operatorname{Id}_{d \times d}} U(d) \simeq \mathbb{C}^{d \times n}/\!/\!_{\mathscr{L}}GL_n(\mathbb{C})\).

RIP Problem. What is the probability that a random ENP frame satisfies a Restricted Isometry Property?

\((1-\delta) \|v\|^2 \leq \|F^* v \|^2 \leq (1+\delta) \|v\|^2\) for all sufficiently sparse \(v\)

Thank you!

Funding: Simons Foundation

References

Symplectic geometry and connectivity of spaces of frames

Tom Needham and Clayton Shonkwiler

Advances in Computational Mathematics 47 (2021), no. 1, 5

arXiv:1804.05899

The geometry of constrained random walks and an application to frame theory

Clayton Shonkwiler

2018 IEEE Statistical Signal Processing Workshop (SSP), 343–347