Projet ANR- 16-CE33-0002
Sinan HALIYO, Ph.D, Associate Professor, is the project coordinator. He's the leader of 'Multi-scale Interactions' group at ISIR/Sorbonne.
Michaël WIERTLEWSKI, Ph.D, was a CNRS researcher at the Etienne-Jules Marey Institute.
Edison GERENA
PhD Candidate
ISIR/Sorbonne
Florent LEGENDRE
Engineer
ISIR/Sorbonne
Nicolas HULOUX
PhD Candidate
ISM/AMU
Stéphane Violet, Thibaut Raharijaona
Stéphane Régnier, Vincent Hayward
Julien
DIPERI
Engineer
ISM/AMU
What if you could touch objects smaller then the width of your hair and perceive their universe ?
This is the aim of IOTA Project, funded by ANR France. We are using the power of light to manipulate cells and molecules, and let the user control and feel the interaction with his fingertips.
Fundamental mechanisms of the Universe stem from the microscale phenomena
Understanding and controlling small scales is the current challange in Physics, Biology, Chemistry & Engineering
2018 Nobel prize in Physics were awarded to A. Ashkin for Optical Tweezers. We take it one step further by integrating real-time high-band force feedback, measuring interactions forces in picoNewton range
Directly modifying the friction of the bare finger sliding on glass using ultrasonic vibrations enables the production of virtual relief, texture and buttons on touchscreens.
Capabilities
Challenges
Design of the optical path
Des microrobots produits par impression 3D (nanoscribe)
Ultrasonic friction modulation modifies the area of contact, not the shear strength, IEEE Eurohaptics 2022, Hambourg, Germany
Interactive Laser-actuated micro-robots for Experimental Biology. International Symposium on Optomechatronic Technology (ISOT) 2021 - Best Paper Award
Étude de la réflexion et de l'absorption des ondes ultrasonores par le doigt : application aux surfaces haptiques. Thèse de Doctorat de AMU 2021, Nicolas Huloux
6-DoF Optical-driven Micro-robots with Force Feedback Capabilities for Interactive Bio-manipulation. Thèse de Doctorat de Sorbonne Université 2020, Edison Gerena, GDR Robotique Prix de la Thèse
Tele–Robotic Platform for Dexterous Optical Single-Cell Manipulation. Micromachines, 2019
Improving optical micromanipulation with force-feedback bilateral coupling. ICRA 2020, Paris, France
Robotic Optical-micromanipulation Platform for Dexterous Remote Single-Cell Manipulation. MARSS 2019 July, Helsinki, Finland
High-bandwidth 3D Multi-Trap Actuation Technique for 6-DoF Real-Time Control of Optical Robots, IEEE Robotics and Automation Letters 2019 [DOI]
Overcoming fingertip friction variability with surface haptics force-feedback, In proc. of Eurohaptics 2018, Pisa, Italy. Best Student Paper award [DOI]
Perception of ultrasonic switches involves large discontinuity of the mechanical impedance, IEEE Transactions on Haptics [DOI]
High-bandwidth 3D Force Feedback Optical Tweezers for Interactive Bio-manipulation. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada. Best Student Paper nominee [DOI]
Salon Forum Labo 2017, Paris
Salon ELRIG 2017, Monaco
Demonstration Worldhaptics 2017
Demonstration Eurohaptics 2018
Etude du marché (SATT Lutech)
Recherche de Partenaires Biomédicale/pharmacologie:
Instituts Pasteur, de Vision, de Cerveau et de la moelle épinière
Transfert Industriel:
Création Stratup,
Programme CNRS RISE, i-Phd Bpifrance
DIM-Elicit: « Technologies Innovantes
pour les Sciences de la Vie »
Enseignement:
Cours de M2 commun AMU / UPMC
WP1
API de communication en place
WP2
Pinces optiques 3D avec mesure de force, OptoBots
Simulateur multitrap, avec couplage et retour de force
Implémentation de l'API pour le couplage bilatérale (commande en position/vitesse multi pièges, couplage entre les pièges, retour de mesure d'effort)
Validé sur interfaces haptiques classique
WP3
WP2
Mesure de force 3ddl sur un robot
Mesure de force multipièges synchronisées
WP3
WP4
Dissemination
D1.1 | Specifications | M3 | M6 |
D1.2 | Simulateur | M6 | M6 |
D2.2 | Multi-ddl motion control | M24 | M12 |
D2.3 | External Control | M24 | M36 |
D3.3 | Interface tactile | M27 | M12 |
D1.2 | API Interface utilisateur | M6 | M36 |
D2.1 | Mesure de force multitrap | M12 | M36 |
D3.1 | Capteur hyper-acuité | M12 | M30 |
D3.2 | Capteur multi-touch | M24 | M30 |
D4.1 | Schéma de commande bilatérale | M30 | M36 |
D4.2 | Evaluation utilisateurs | M36 | M36 |
D4.3 | Demonstrateur complet | M36 | M48 |
M1.1 | Validation du simulateur | M6 |
M2.1 | Beam Switcher | M12 |
M3.1 | Validation capteur | M12 |
M3.2 | Mesure de force sous le doigt | M18 |
M3.3 | Validation de réduction de friction | M20 |
M2.2 | Asynchronious vision | M30 |
M2.3 | Synchro beam switch + vision | M30 |
M4.1 | OT avec retour haptique | M33 |
M4.2 | Protocole expé validé | M33 |