(Joint work with Youqian Gao)
Background
Muandet, Krikamol, et al. (2017) "Kernel mean embedding of distributions: A review and beyond." Foundations and Trends® in Machine Learning
Building on the exploratory data analysis, we introduce a word-level variant of the maximum mean discrepancy to enhance and regulate the construction of word embeddings.
Our objective is to obtain an embedding matrix \(\mathbf{M}\) such that the word-level distributions of the numerical representations (\(\mathbf{M}_{X_\tau}| Y=-1\) and \(\mathbf{M}_{X_\tau}| Y=1\)) preserve the discrepancy between \(X_\tau | Y = -1\) and \(X_\tau | Y=1\). Here, \(\mathbf{M}_{X_\tau} = \mathbf{M}^\intercal \mathbf{e}_{X_\tau}\) represents the numerical representation of the word \(X_\tau\) based on the embedding matrix \(\mathbf{M}\). To measure the difference between distributions, we propose a word-level variant of the maximum mean discrepancy (Gretton et al, 2012), termed word-level MMD (wMMD), which is based on the embedding matrix \(\mathbf{M}\):
where \((\tau', \mathbf{X}', Y')\) is an iid copy of \((\tau, \mathbf{X}, Y)\). \(\mathcal{H}_\mathcal{K}\) is a RKHS with a kernel \(\mathcal{K}(\cdot, \cdot)\), such as the Gaussian kernel.
$$ := \Big( \sup_{\|h\|_{\mathcal{H}_\mathcal{K}} \leq 1} \Big( \mathbb{E} \big( h (\mathbf{M}_{X_\tau} ) \big| Y =-1 \big) - \mathbb{E}\big( h(\mathbf{M}_{X'_{\tau'}}) \big| Y' = 1 \big) \Big) \Big)^2 $$
$$ \text{wMMD}^2 (\mathbf{M};\mathbb{P}_{\cdot|Y=-1}, \mathbb{P}_{\cdot|Y=1}) $$
$$ = \mathbb{E} \big( \mathcal{K}(\mathbf{M}_{X_\tau}, \mathbf{M}_{X'_{\tau'}}) \big| Y=-1, Y'=-1 \big) $$
$$ - 2 \mathbb{E} \big( \mathcal{K}(\mathbf{M}_{X_\tau}, \mathbf{M}_{X'_{\tau'}}) \big| Y=-1, Y'=1 \big) $$
$$ + \mathbb{E} \big( \mathcal{K}(\mathbf{M}_{X_\tau}, \mathbf{M}_{X'_{\tau'}}) \big | Y=1, Y'=1 \big) $$
When \(\mathcal{K}\) is a universal kernel , \( \text{wMMD}(\mathbf{M}) = 0\) implies that \(\mathbf{M}_{X_\tau}|Y=-1 \stackrel{d}{=} \mathbf{M}_{X_\tau}|Y=1\), indicating no discrepancies between the word-level distributions of the numerical representations.
reproducing property
Given a training dataset \(\mathcal{D}_n = (\mathbf{x}_i, y_i)_{i=1, \cdots, n}\) and a pd kernel function \(\mathcal{K}(\cdot, \cdot)\), we define \(\mathcal{I}^+ = \{1 \leq i \leq n: y_i = 1\}\) and \(\mathcal{I}^- = \{1 \leq i \leq n: y_i = -1\}\). The empirical estimate of \(\text{wMMD}^2(\mathbf{M})\) is given by:
$$ \widehat{\text{wMMD}}^2(\mathbf{M}; \mathcal{D}_n) = \frac{1}{d^2 |\mathcal{I}^-|(|\mathcal{I}^-| - 1)} \sum_{i,i' \in \mathcal{I}^-; i\neq i'} \sum_{j=1}^d \sum_{j'=1}^d \mathcal{K}( \mathbf{M}_{x_{ij}}, \mathbf{M}_{x_{i'j'}}) $$
$$ - \frac{2}{d^2 |\mathcal{I}^-| |\mathcal{I}^+|} \sum_{i \in \mathcal{I}^-; i' \in \mathcal{I}^+} \sum_{j=1}^d \sum_{j'=1}^d \mathcal{K}( \mathbf{M}_{x_{ij}}, \mathbf{M}_{x_{i'j'}}) $$
$$ + \frac{1}{d^2|\mathcal{I}^+|(|\mathcal{I}^+| - 1)} \sum_{i,i' \in \mathcal{I}^+; i \neq i'} \sum_{j=1}^d \sum_{j'=1}^d \mathcal{K}( \mathbf{M}_{x_{ij}}, \mathbf{M}_{x_{i'j'}} ). $$
Lemma 1. \(\widehat{\text{wMMD}}^2(\mathbf{M}; \mathcal{D}_n)\) is an unbiased estimator of \(\text{wMMD}^2(\mathbf{M})\).
Simulation (Topic modelling). For \(1 \leq j \leq d\), let \(X_{j} \mid Y = 0 \overset{\mathrm{i.i.d.}}{\sim} \text{BetaBin}(V, \alpha_0, \beta_0)\) and \(X_{j} \mid Y = 1 \overset{\mathrm{i.i.d.}}{\sim} \text{BetaBin}(V, \alpha_1, \beta_1)\), where \(\text{BetaBin}(\cdot)\) denotes the beta-binomial distribution.
Blei D. et al. (2010). Introduction to Probabilistic Topic Models
Simulation (Topic modelling). For \(1 \leq j \leq d\), let \(X_{j} \mid Y = 0 \overset{\mathrm{i.i.d.}}{\sim} \text{BetaBin}(V, \alpha_0, \beta_0)\) and \(X_{j} \mid Y = 1 \overset{\mathrm{i.i.d.}}{\sim} \text{BetaBin}(V, \alpha_1, \beta_1)\), where \(\text{BetaBin}(\cdot)\) denotes the beta-binomial distribution.
Simulation (Topic modelling). For \(1 \leq j \leq d\), let \(X_{j} \mid Y = 0 \overset{\mathrm{i.i.d.}}{\sim} \text{BetaBin}(V, \alpha_0, \beta_0)\) and \(X_{j} \mid Y = 1 \overset{\mathrm{i.i.d.}}{\sim} \text{BetaBin}(V, \alpha_1, \beta_1)\), where \(\text{BetaBin}(\cdot)\) denotes the beta-binomial distribution.
Real Datasets
Real Datasets
Neural Network Architectures: BiLSTM, GRU, CNN
Competitors: L1, dropout, re-embedding, group-lasso, wMMD (our)
Real Application
CE-T1
BBC-News
From 2008 to 2024, a 16-year period of continuous contributions.
Countless hours have been devoted.
Since its development in 2008, it has consistently remained the No. 1 solver for solving SVMs.
The primal is QP with 2n linear constraints
Given a training set of \(n\) points of the form \((\mathbf{x}_i, y_i)_{i=1}^n\), where \(y = \pm 1\) which indicates the binary label of the \(i\)-th instance \( \mathbf{x}_i \in \mathbb{R}^d \).
Primal form.
$$ \min_{\pmb{\beta}, \xi} \sum_{i=1}^{n} C_i \xi_i + \frac{1}{2} \| \pmb{\beta} \|^2 $$
$$y_i \pmb{\beta}^T \mathbf{x}_i \geq 1 - \xi_i, \quad \xi_i \geq 0, \quad i = 1, \ldots, n$$
$$\min_{\pmb{\beta}} \sum_{i=1}^{n} C_i ( 1 - y_i \pmb{\beta}^T \mathbf{x}_i )_+ + \frac{1}{2} \| \pmb{\beta} \|^2 $$
After introducing some slack variables,
The dual is a box-constrained QP
$$L_P = \sum_{i=1}^{n} C_i \xi_i + \frac{1}{2} \| \pmb{\beta} \|^2 - \sum_{i=1}^n \alpha_i \big( y_i \mathbf{x}_i^T \pmb{\beta} - (1 - \xi_i) \big) - \sum_{i=1}^n \mu_i \xi_i$$
$$ \pmb{\beta} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i, \quad \alpha_i = C_i - \mu_i, $$
Dual form:
$$ \min_{\pmb{\alpha}} \frac{1}{2} \pmb{\alpha}^T \mathbf{Q} \pmb{\alpha} - \mathbf{1}^T \pmb{\alpha}, \quad \text{s.t.} \quad 0 \leq \alpha_i \leq C_i$$
KKT Condition
$$L_P = \sum_{i=1}^{n} C_i \xi_i + \frac{1}{2} \| \pmb{\beta} \|^2 - \sum_{i=1}^n \alpha_i \big( y_i \mathbf{x}_i^T \pmb{\beta} - (1 - \xi_i) \big) - \sum_{i=1}^n \mu_i \xi_i$$
$$ \pmb{\beta} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i, \quad \alpha_i = C_i - \mu_i, $$
Dual form:
$$ \min_{\pmb{\alpha}} \frac{1}{2} \pmb{\alpha}^T \mathbf{Q} \pmb{\alpha} - \mathbf{1}^T \pmb{\alpha}, \quad \text{s.t.} \quad 0 \leq \alpha_i \leq C_i$$
KKT Condition
The dual is a box-constrained QP
$$ \min_{\delta_i} \frac{1}{2} Q_{ii} \delta_i^2 + \big((\mathbf{Q} \pmb{\alpha})_i - 1\big) \delta_i, \quad \text{s.t.} \quad -\alpha_i \leq \delta_i \leq C_i - \alpha_i$$
where \( \mathbf{Q}_{ij} = y_i y_j \mathbf{x}^T_i \mathbf{x}_j \). The solution to the sub-problem is:
CD sub-problem. Given an "old" value of \( \pmb{\alpha} \), we solve
$$ \delta^*_i = \max \Big( -\alpha_i, \min\big( C_i - \alpha_i, \frac{1 - ( (\mathbf{Q}\pmb{\alpha})_i )}{Q_{ii}} \big) \Big) $$
$$ \alpha_i^* \leftarrow \alpha_i + \delta^*_i$$
$$ \min_{\delta_i} \frac{1}{2} Q_{ii} \delta_i^2 + \big((\mathbf{Q} \pmb{\alpha})_i - 1\big) \delta_i, \quad \text{s.t.} \quad -\alpha_i \leq \delta_i \leq C_i - \alpha_i$$
where \( \mathbf{Q}_{ij} = y_i y_j \mathbf{x}^T_i \mathbf{x}_j \). The solution to the sub-problem is:
CD sub-problem. Given an "old" value of \( \pmb{\alpha} \), we solve
$$ \delta^*_i = \max \Big( -\alpha_i, \min\big( C_i - \alpha_i, \frac{1 - ( (\mathbf{Q}\pmb{\alpha})_i )}{Q_{ii}} \big) \Big) $$
$$ \alpha_i^* \leftarrow \alpha_i + \delta^*_i$$
Note that \( (\mathbf{Q} \mathbf{\alpha})_{i} = y_i \mathbf{x}_i^T \sum_{j=1}^n y_j \mathbf{x}_j \alpha_j \)
\( O(nd) \)
(at least O(n) if Q is pre-computed)
$$ \min_{\delta_i} \frac{1}{2} Q_{ii} \delta_i^2 + \big((\mathbf{Q} \pmb{\alpha})_i - 1\big) \delta_i, \quad \text{s.t.} \quad -\alpha_i \leq \delta_i \leq C_i - \alpha_i$$
where \( \mathbf{Q}_{ij} = y_i y_j \mathbf{x}^T_i \mathbf{x}_j \). The solution to the sub-problem is:
CD sub-problem. Given an "old" value of \( \pmb{\alpha} \), we solve
$$ \delta^*_i = \max \Big( -\alpha_i, \min\big( C_i - \alpha_i, \frac{1 - ( (\mathbf{Q}\pmb{\alpha})_i )}{Q_{ii}} \big) \Big) $$
$$ \alpha_i^* \leftarrow \alpha_i + \delta^*_i$$
Note that \( (\mathbf{Q} \mathbf{\alpha})_{i} = y_i \mathbf{x}_i^T \sum_{j=1}^n y_j \mathbf{x}_j \alpha_j \)
\( O(nd) \)
(at least O(n) if Q is pre-computed)
$$ \min_{\delta_i} \frac{1}{2} Q_{ii} \delta_i^2 + \big((\mathbf{Q} \pmb{\alpha})_i - 1\big) \delta_i, \quad \text{s.t.} \quad -\alpha_i \leq \delta_i \leq C_i - \alpha_i$$
where \( \mathbf{Q}_{ij} = y_i y_j \mathbf{x}^T_i \mathbf{x}_j \). The solution to the sub-problem is:
CD sub-problem. Given an "old" value of \( \pmb{\alpha} \), we solve
$$ \delta^*_i = \max \Big( -\alpha_i, \min\big( C_i - \alpha_i, \frac{1 - ( (\mathbf{Q}\pmb{\alpha})_i )}{Q_{ii}} \big) \Big) $$
$$ \alpha_i^* \leftarrow \alpha_i + \delta^*_i$$
\( O(n^2) \)
Loop over \((i=1,\cdots,n)\)
$$ \min_{\delta_i} \frac{1}{2} Q_{ii} \delta_i^2 + \big((\mathbf{Q} \pmb{\alpha})_i - 1\big) \delta_i, \quad \text{s.t.} \quad -\alpha_i \leq \delta_i \leq C_i - \alpha_i$$
where \( \mathbf{Q}_{ij} = y_i y_j \mathbf{x}^T_i \mathbf{x}_j \). The solution to the sub-problem is:
CD sub-problem. Given an "old" value of \( \pmb{\alpha} \), we solve
$$ \delta^*_i = \max \Big( -\alpha_i, \min\big( C_i - \alpha_i, \frac{1 - ( (\mathbf{Q}\pmb{\alpha})_i )}{Q_{ii}} \big) \Big) $$
$$ \alpha_i^* \leftarrow \alpha_i + \delta^*_i$$
\( O(n^2) \)
Loop over \((i=1,\cdots,n)\)
$$ \min_{\delta_i} \frac{1}{2} Q_{ii} \delta_i^2 + \big((\mathbf{Q} \pmb{\alpha})_i - 1\big) \delta_i, \quad \text{s.t.} \quad -\alpha_i \leq \delta_i \leq C_i - \alpha_i$$
where \( \mathbf{Q}_{ij} = y_i y_j \mathbf{x}^T_i \mathbf{x}_j \). The solution to the sub-problem is:
CD sub-problem. Given an "old" value of \( \pmb{\alpha} \), we solve
$$ \delta^*_i = \max \Big( -\alpha_i, \min\big( C_i - \alpha_i, \frac{1 - ( (\mathbf{Q}\pmb{\alpha})_i )}{Q_{ii}} \big) \Big) $$
$$ \alpha_i^* \leftarrow \alpha_i + \delta^*_i$$
Note that \( (\mathbf{Q} \mathbf{\alpha})_{i} = y_i \mathbf{x}_i^T \sum_{j=1}^n y_j \mathbf{x}_j \alpha_j \)
\( O(nd) \)
KKT Condition
$$ \pmb{\beta} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i $$
$$ \min_{\delta_i} \frac{1}{2} Q_{ii} \delta_i^2 + \big((\mathbf{Q} \pmb{\alpha})_i - 1\big) \delta_i, \quad \text{s.t.} \quad -\alpha_i \leq \delta_i \leq C_i - \alpha_i$$
where \( \mathbf{Q}_{ij} = y_i y_j \mathbf{x}^T_i \mathbf{x}_j \). The solution to the sub-problem is:
CD sub-problem. Given an "old" value of \( \pmb{\alpha} \), we solve
$$ \delta^*_i = \max \Big( -\alpha_i, \min\big( C_i - \alpha_i, \frac{1 - ( (\mathbf{Q}\pmb{\alpha})_i )}{Q_{ii}} \big) \Big) $$
$$ \alpha_i^* \leftarrow \alpha_i + \delta^*_i$$
Note that \( (\mathbf{Q} \mathbf{\alpha})_{i} = y_i \mathbf{x}_i^T \sum_{j=1}^n y_j \mathbf{x}_j \alpha_j \)
\( O(nd) \)
$$= y_i \mathbf{x}^T_i \mathbf{\beta}$$
KKT Condition
$$ \pmb{\beta} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i $$
\( O(d) \)
$$ \min_{\delta_i} \frac{1}{2} Q_{ii} \delta_i^2 + \big((\mathbf{Q} \pmb{\alpha})_i - 1\big) \delta_i, \quad \text{s.t.} \quad -\alpha_i \leq \delta_i \leq C_i - \alpha_i$$
where \( \mathbf{Q}_{ij} = y_i y_j \mathbf{x}^T_i \mathbf{x}_j \). The solution to the sub-problem is:
CD sub-problem. Given an "old" value of \( \pmb{\alpha} \), we solve
$$ \delta^*_i = \max \Big( -\alpha_i, \min\big( C_i - \alpha_i, \frac{1 - ( (\mathbf{Q}\pmb{\alpha})_i )}{Q_{ii}} \big) \Big) $$
$$ \alpha_i^* \leftarrow \alpha_i + \delta^*_i$$
\( O(n^2) \)
Loop over \((i=1,\cdots,n)\)
$$ \delta^*_i = \max \Big( -\alpha_i, \min\big( C_i - \alpha_i, \frac{1 - y_i \pmb{\beta}^T\mathbf{x}_i }{Q_{ii}} \big) \Big) $$
$$ \alpha_i^* \leftarrow \alpha_i + \delta^*_i, \quad \pmb{\beta} \leftarrow \pmb{\beta} + \delta^* y_i \mathbf{x}_i$$
\( O(nd) \)
Loop over \((i=1,\cdots,n)\)
pure CD
primal-dual CD
What contributes to the rapid efficiency of Liblinear?
Source: Ryan Tibshirani, Convex Optimization, lecture notes
What contributes to the rapid efficiency of Liblinear?
Luo, Z. Q., & Tseng, P. (1992). On the convergence of the coordinate descent method for convex differentiable minimization. Journal of Optimization Theory and Applications.
What contributes to the rapid efficiency of Liblinear?
Combine Linear KKT in CD updates.
Extension. When the idea of "LibLinear" can be applied?
$$L_P = \sum_{i=1}^{n} C_i \xi_i + \frac{1}{2} \| \pmb{\beta} \|^2 - \sum_{i=1}^n \alpha_i \big( y_i \mathbf{x}_i^T \pmb{\beta} - (1 - \xi_i) \big) - \sum_{i=1}^n \mu_i \xi_i$$
Extension. When the idea of "LibLinear" can be applied?
Linear KKT Conditions
Extension. When the idea of "LibLinear" can be applied?
Linear KKT Conditions
In this paper, we consider a general regularized ERM based on a convex PLQ loss with linear constraints:
\( \min_{\mathbf{\beta} \in \mathbb{R}^d} \sum_{i=1}^n L_i(\mathbf{x}_i^\intercal \mathbf{\beta}) + \frac{1}{2} \| \mathbf{\beta} \|_2^2, \quad \text{ s.t. } \mathbf{A} \mathbf{\beta} + \mathbf{b} \geq \mathbf{0}, \)
\( L_i(\cdot) \geq 0\) is the proposed composite ReLU-ReHU loss.
\( \mathbf{x}_i \in \mathbb{R}^d\) is the feature vector for the \(i\)-th observation.
\(\mathbf{A} \in \mathbb{R}^{K \times d}\) and \(\mathbf{b} \in \mathbb{R}^K\) are linear inequality constraints for \(\mathbf{\beta}\).
We focus on working with a large-scale dataset, where the dimension of the coefficient vector and the total number of constraints are comparatively much smaller than the
sample sizes, that is, \(d \ll n\) and \(K \ll n\).
Definition 1 (Dai and Qiu. 2023). A function \(L(z)\) is composite ReLU-ReHU, if there exist \( \mathbf{u}, \mathbf{v} \in \mathbb{R}^{L}\) and \(\mathbf{\tau}, \mathbf{s}, \mathbf{t} \in \mathbb{R}^{H}\) such that
\( L(z) = \sum_{l=1}^L \text{ReLU}( u_l z + v_l) + \sum_{h=1}^H \text{ReHU}_{\tau_h}( s_h z + t_h)\)
where \( \text{ReLU}(z) = \max\{z,0\}\), and \( \text{ReHU}_{\tau_h}(z)\) is defined below.
Theorem 1 (Dai and Qiu. 2023). A loss function \(L:\mathbb{R}\rightarrow\mathbb{R}_{\geq 0}\) is convex PLQ if and only if it is composite ReLU-ReHU.
\( \min_{\mathbf{\beta} \in \mathbb{R}^d} \sum_{i=1}^n L_i(\mathbf{x}_i^\intercal \mathbf{\beta}) + \frac{1}{2} \| \mathbf{\beta} \|_2^2, \quad \text{ s.t. } \mathbf{A} \mathbf{\beta} + \mathbf{b} \geq \mathbf{0}, \)
can also handle elastic-net penalty.
A broad range of problems. ReHLine applies to any convex piecewise linear-quadratic loss function (potential for non-smoothness included) with any linear constraints, including the hinge loss, the check loss, the Huber loss, etc.
Super efficient. ReHLine has a linear convergence rate. The per-iteration computational complexity is linear in the sample size.
The linear relationship between primal and dual variables greatly simplifies the computation of CD.
Software. generic/ specialized software
Powered by
Powered by
LIBLINEAR
ReHLine
If you like ReHLine
please star 🌟 our Github repository, thank you!