Stefan Sommer, University of Copenhagen
Faculty of Science, University of Copenhagen
Stochastic shape process:
\[dX_t=K(X_t)\circ dW_t\]
Kernel matrix:
\[K(X_t)^i_j=k(x_i,x_j)\]
\(X_t\) landmarks at time \(t\):
\[X_t=\begin{pmatrix}x_{1,t}\\y_{1,t}\\\vdots\\x_{n,t}\\y_{n,t}\end{pmatrix}\]
\(X_0\)
\(t=\frac12\)
\(t=3\)
Conditioning on hitting target \(v\) at time \(T>0\):
\[X_t|X_T=v\]
Ito stochastic process:
\[dx_t=b(t,x_t)dt\qquad\qquad\qquad\\+\sigma(t,x_t)dW_t\]
Bridge process:
\[dx^*_t=b(t,x^*_t)dt+a(t,x^*_t)\nabla_x\log \rho_t(x^*_t)dt\\+\sigma(t,x^*_t)dW_t\]
Score \(\nabla_x\log \rho_t\) intractable....
\[\rho_t(x)=p_{T-t}(v;x)\]
\[a(t,x)=\sigma(t,x)\sigma(t,x)^T\]
black: \(X_0\), red: \(v\)
Auxilary process:
\[d\tilde{x}_t=\tilde{b}(t,\tilde{x}_t)dt+\tilde{\sigma}(t,\tilde{x}_t)dW_t\]
Approximate bridge:
\[d\tilde{x}_t=\tilde{x}(t,\tilde{x}_t)dt\\+\tilde{a}(t,\tilde{x}_t)\nabla_x\log \tilde{\rho}_t(\tilde{x})dt+\tilde{\sigma}(t,\tilde{x}_t)dW_t\]
E.g. linear process so that score \(\nabla_x\log \tilde{\rho}_t\) is known in closed from
(almost) explicitly computable likelihood ratio:
\[\frac{d\mathbb P^*}{d\tilde\mathbb P}=\frac{\tilde{\rho}_0(v)}{\rho_0(v)}\Psi(\tilde{x}_t)\]
van der Meulen, Schauer et al.
Ito stochastic process:
\[dx_t=b(t,x_t)dt+\sigma(t,x_t)dW_t\]
Bridge process:
\[dx^*_t=b(t,x^*_t)dt\\+a(t,x^*_t)\nabla_x\log \rho_t(x^*_t)dt+\sigma(t,x^*_t)dW_t\]
Score \(\nabla_x\log \rho_t\) intractable....
v.d. Meulen,Schauer,Arnaudon,Sommer,arxiv'21
Delyon/Hu 2006:
\(\sigma\) invertible:
\(v\)
\(x_0\)
\(x_t\)
Jensen, Mallasto, Sommer 2019 ; Jensen, Sommer 2021, 2022
Bridge:
Leaf conditioning:
\(x_0\)
\(v\)
\(x_0\)
\(h\)
\(v_1\)
\(v_2\)
van der Meulen, Schauer + Soustrup, Nielsen, van der Meulen, Sommer
\(v_2\)
\(x_0\)
\(h\)
\(v_1\)
\(v_2\)
Brownian motion starting point
code: http://bitbucket.com/stefansommer/jaxgeometry Centre for Computational Evolutionary Morphometry: http://www.ccem.dk
slides: https://slides.com/stefansommer Stochastic Morphometry: https://www.ccem.dk/stochastic-morphometry/
References:
Generalization of Euclidean statistical notions and techniques.
Nye, White, JMIV'14;
Sommer,IPMI'15; Sommer,Svane,JGM'15;
Hansen,Eltzner,Huckemann,Sommer,GSI'21,'21
smeary at optimal \(t\)?
Brownian motion samples
two-pole distribution
variance modulation:
non-trivial covariance: fit anisotropic normal distributions