Stefan Sommer, University of Copenhagen
Faculty of Science, University of Copenhagen
Stochastic shape process:
dXt=K(Xt)∘dWt
Kernel matrix:
K(Xt)ji=k(xi,xj)
Xt landmarks at time t:
Xt=x1,ty1,t⋮xn,tyn,t
X0
t=21
t=3
Conditioning on hitting target v at time T>0:
Xt∣XT=v
Ito stochastic process:
dxt=b(t,xt)dt+σ(t,xt)dWt
Bridge process:
dxt∗=b(t,xt∗)dt+a(t,xt∗)∇xlogρt(xt∗)dt+σ(t,xt∗)dWt
Score ∇xlogρt intractable....
ρt(x)=pT−t(v;x)
a(t,x)=σ(t,x)σ(t,x)T
black: X0, red: v
Auxilary process:
dx~t=b~(t,x~t)dt+σ~(t,x~t)dWt
Approximate bridge:
dx~t=x~(t,x~t)dt+a~(t,x~t)∇xlogρ~t(x~)dt+σ~(t,x~t)dWt
E.g. linear process so that score ∇xlogρ~t is known in closed from
(almost) explicitly computable likelihood ratio:
\[\frac{d\mathbb P^*}{d\tilde\mathbb P}=\frac{\tilde{\rho}_0(v)}{\rho_0(v)}\Psi(\tilde{x}_t)\]
van der Meulen, Schauer et al.
Ito stochastic process:
dxt=b(t,xt)dt+σ(t,xt)dWt
Bridge process:
dxt∗=b(t,xt∗)dt+a(t,xt∗)∇xlogρt(xt∗)dt+σ(t,xt∗)dWt
Score ∇xlogρt intractable....
v.d. Meulen,Schauer,Arnaudon,Sommer,arxiv'21
Delyon/Hu 2006:
σ invertible:
v
x0
xt
Jensen, Mallasto, Sommer 2019 ; Jensen, Sommer 2021, 2022
Bridge:
Leaf conditioning:
x0
v
x0
h
v1
v2
van der Meulen, Schauer + Soustrup, Nielsen, van der Meulen, Sommer
v2
x0
h
v1
v2
Brownian motion starting point
code: http://bitbucket.com/stefansommer/jaxgeometry Centre for Computational Evolutionary Morphometry: http://www.ccem.dk
slides: https://slides.com/stefansommer Stochastic Morphometry: https://www.ccem.dk/stochastic-morphometry/
References:
Generalization of Euclidean statistical notions and techniques.
Nye, White, JMIV'14;
Sommer,IPMI'15; Sommer,Svane,JGM'15;
Hansen,Eltzner,Huckemann,Sommer,GSI'21,'21
smeary at optimal t?
Brownian motion samples
two-pole distribution
variance modulation:
non-trivial covariance: fit anisotropic normal distributions