Stefan Sommer, University of Copenhagen
Faculty of Science, University of Copenhagen
BIMSA, Yanqi Lake, 2023
w/ Erlend Grong, Alexis Arnaudon, Darryl Holm, Sarang Joshi, Frank v.d. Meulen, Moritz Schauer, Benjamin Eltzner, Stephan Huckemann, Line Kuhnel, Mathias H. Jensen, Pernille E.H. Hansen, Mads Nielsen, Rasmus Nielsen, Christy Hipsley
Villum foundation
Novo nordisk foundation
University of Copenhagen
action: \(\phi.s=\phi\circ s\) (shapes)
\(\phi.s=s\circ\phi^{-1}\) (images)
\( \phi \)
\( \phi \) warp of domain \(\Omega\) (2D or 3D space)
landmarks: \(s=(x_1,\ldots,x_n)\)
curves: \(s: \mathbb S^1\to\mathbb R^2\)
surfaces: \(s: \mathbb S^2\to\mathbb R^3\)
\( \phi_t:[0,T]\to\mathrm{Diff}(\Omega) \) path of diffeomorphisms (parameter t)
LDDMM: Grenander, Miller, Trouve, Younes, Christensen, Joshi, et al.
Markussen,CVIU'07; Budhiraja,Dupuis,Maroulas,Bernoulli'10
Trouve,Vialard,QAM'12;Vialard,SPA'13;Marsland/Shardlow,SIIMS'17
Arnaudon,Holm,Sommer,IPMI'17; FoCM'18; JMIV'19
Arnaudon,v.d. Meulen,Schauer,Sommer'21
v.d. Meulen,Schauer,Arnaudon,Sommer, SIIMS 21
Center for Computational Evolutionary Morphometrics
w/ Rasmus Nielsen
Deterministic:
Stochastic:
Plane directions: \(\mathbb{S}^1\)
Geographical data: \(\mathbb{S}^2\)
3D directions: \(\mathrm{SO}(3), \mathbb{S}^2\)
Angles: \(\mathbb{T}^N\)
Jensen, Mallasto, Sommer 2019 ; Jensen, Sommer 2021, 2022
Delyon/Hu 2006:
\(\sigma\) invertible:
\(v\)
\(x_0\)
\(x_t\)
\(h_u=(\pi_*|_{H_uFM})^{-1}\)
\(H_i(u)=h_u(ue_i)\)
Stochastic development:
\(dU_t=\sum_{i=1}^d H_i(U_t)\circ_{\mathcal S} dW_t^i\)
\(W_t\) Euclidean Brownian motion
\(X_t=\pi(U_t)\) Riemannian Brownian motion
\(U_t\) is stochastically parallel transported
Fix \(T>0\): \(U_T\) probability distribution in \(FM\)
Rolling without slipping
Driving semi-martingale:
developed process:
Fermi bridge:
\(\pi\)
Thompson'16, Sommer,Joshi,Højgaard,'22
Left-invariant frame:
\(V_i(g)=(dL_g)_ev_i,\quad v_i\in\mathfrak g\)
Brownian motion:
\(dg_t=-\frac12V_0(g_t)dt+V_i(g_t)\circ dW_t^i\)
Fermi bridge:
\(dg_t=-\frac12V_0(g_t)dt+V_i(g_t)\circ \left(dW_t^i-\frac{\mathrm{log}_{g_t}(v)^i}{T-t}dt\right)\)
Fermi bridge to fiber:
\(dg_t=-\frac12V_0(g_t)dt+V_i(g_t)\circ \left(dW_t^i-\frac{\left(\nabla d(g_t,\pi^{-1}(v))^2\right)^i}{2(T-t)}dt\right)\)
Generalization of Euclidean statistical notions and techniques.
Nye, White, JMIV'14;
Sommer,IPMI'15; Sommer,Svane,JGM'15;
Hansen,Eltzner,Huckemann,Sommer,GSI'21,Bernoulli'23
Brownian motion starting point
smeary at optimal \(t\)?
Brownian motion samples
two-pole distribution
variance modulation:
Direct optimzation of \(\mathcal{L}(\theta; y_1,\ldots,y_N)\):
Direct sampling:
Sommer, Bronstein, TPAMI 2021; Jensen, Sommer, Algorithms 2022
Fermi bridge:
Coordinate bridge:
One (or few) forward samples - compared to nested optimization
Added variance on top of CLT - gain in computational speed
Diagonally conditioned process:
Frechet mean (green), diffusion mean (blue)
non-trivial covariance: fit anisotropic normal distributions
development
anti-development
Sommer,Svane,JGM'15; Sommer,Entropy,'16
Grong, Sommer, FoCM 2022
Grong, 2021
Vertical derivative of heat equation:
code: http://bitbucket.com/stefansommer/jaxgeometry Centre for Computational Evolutionary Morphometry: http://www.ccem.dk
slides: https://slides.com/stefansommer Stochastic Morphometry: https://www.ccem.dk/stochastic-morphometry/
References: