Stefan Sommer, University of Copenhagen
Faculty of Science, University of Copenhagen
Zuse Institute Berlin, 2024
w/ Sarang Joshi, Frank v.d. Meulen, Moritz Schauer, Benjamin Eltzner, Stephan Huckemann, Mathias H. Jensen, Pernille E.H. Hansen, Mads Nielsen, Rasmus Nielsen, Christy Hipsley
Villum foundation
Novo nordisk foundation
University of Copenhagen
action: \(\phi.s=\phi\circ s\) (shapes)
\(\phi.s=s\circ\phi^{-1}\) (images)
\( \phi \)
\( \phi \) warp of domain \(\Omega\) (2D or 3D space)
landmarks: \(s=(x_1,\ldots,x_n)\)
curves: \(s: \mathbb S^1\to\mathbb R^2\)
surfaces: \(s: \mathbb S^2\to\mathbb R^3\)
\( \phi_t:[0,T]\to\mathrm{Diff}(\Omega) \) path of diffeomorphisms (parameter t)
LDDMM: Grenander, Miller, Trouve, Younes, Christensen, Joshi, et al.
Markussen,CVIU'07; Budhiraja,Dupuis,Maroulas,Bernoulli'10
Trouve,Vialard,QAM'12;Vialard,SPA'13;Marsland/Shardlow,SIIMS'17
Arnaudon,Holm,Sommer,IPMI'17; FoCM'18; JMIV'19
Arnaudon,v.d. Meulen,Schauer,Sommer'21
geodesic ODE
perturbed SDE
Statistics of geometric data:
- plane directions: \(\mathbb{S}^1\)
- geographical data: \(\mathbb{S}^2\)
- 3D directions: \(\mathrm{SO}(3), \mathbb{S}^2\)
- angles: \(\mathbb{T}^N\)
- shapes
Deterministic:
Stochastic:
Generalization of Euclidean statistical notions and techniques.
Nye, White, JMIV'14;
Sommer,IPMI'15; Sommer,Svane,JGM'15;
Hansen,Eltzner,Huckemann,Sommer,GSI'21,Bernoulli'23
Brownian motion starting point
Hotz,Huckemann'11; Le,Barden'14
Eltzner,Huckeman'19; Hansen,Eltzner,Huckemann,Sommer'23
variance modulation:
Jensen, Mallasto, Sommer 2019 ; Jensen, Sommer 2021, 2022
\(\pi\)
Thompson'16, Sommer,Joshi,Højgaard,'22
A return to morphology:
- Rules of morphological change
- Drivers of morphological change (ecology, historical contingency)
- Mechanisms of morphological change (genetic basis)
Center for Computational Evolutionary Morphometrics
w/ Rasmus Nielsen
Brown. motion
Brown. motion
Brown. motion
Brown. motion
branch (independent children)
incorporate leaf observations \(x_{V_T}\) into probabilistic model:
\(p(X_t|x_{V_T})\)
Doob’s h-transform
\(h_s(x)=\prod_{t\in\mathrm{ch(s)}}h_{s\to t}(x)\)
conditioned process \(X^*_t\)
approximations \(\tilde{h}\)
guided process \(X^\circ_t\)
code: http://bitbucket.com/stefansommer/jaxgeometry Centre for Computational Evolutionary Morphometry: http://www.ccem.dk
slides: https://slides.com/stefansommer Stochastic Morphometry: https://www.ccem.dk/stochastic-morphometry/
References: