Daniel Sutantyo, Department of Computing, Macquarie University
2.1 - Induction
2.1 - Induction
2.1 - Induction
2.1 - Induction
2.1 - Induction
2.1 - Induction
\(1= \frac{1(1+1)}{2}\)
\(1+2 = \frac{2(2+1)}{2}\)
\(1+2+3 = \frac{3(3+1)}{2}\)
\( 1+2+3 +4= \frac{4(4+1)}{2}\)
2.1 - Induction
2.1 - Induction
2.1 - Induction
For example
2.1 - Induction
2.1 - Induction
2.1 - Induction
2.1 - Induction
2.1 - Induction
2.1 - Induction
LHS :
\[ 1\]
\[\frac{1(1+1)}{2} = 1\]
RHS :
2.1 - Induction
\[1+2+\cdots + k = \frac{k(k+1)}{2} \text{for some $k \ge 1, k \in \mathbb N$}\]
2.1 - Induction
\[1+2+3+\cdots+(k+1) = (k+1) + (1+2+3+\cdots+k)\]
\[= (k+1) + \frac{k(k+1)}{2} \]
\[= \frac{2k+2 + k^2 + k}{2} = \frac{k^2 +3k + 2}{2}\]
\[= \frac{(k+1)(k+2)}{2}\]
(as required)
(from the induction hypothesis)
2.1 - Induction
2.1 - Induction
\[\sum_{i=1}^{k+1} i = (k+1) + \sum_{i=1}^k i = O(k) + k+1 = O(k+1)\]
\[1+2 + \cdots + k = O(k)\]
\[1 + 2 + \cdots + k + (k+1) = O(k+1)\]
2.1 - Induction
\(k\) is a prime number
\(k+2\) is a prime number
now what ... ?
2.1 - Induction
\[\prod_{i=1}^n i = 1 \times 2 \times \cdots \times n = n! \]
(this one is a bit silly because we are proving a definition)
\[\prod_{i=1}^k i = 1 \times 2 \times \cdots \times k = k! \]
\[\prod_{i=1}^{k+1} i = 1 \times 2 \times \cdots \times k \times (k+1) = (k+1)! \]
2.1 - Induction
\[ = (k+1) k! \]
\[\prod_{i=1}^{k+1} i = 1 \times 2 \times \cdots \times k \times (k+1) = (k+1)! \]
\[\prod_{i=1}^{k+1} i = 1 \times 2 \times \cdots \times k \times (k+1) = (k+1)\prod_{i=1}^{k+1} i \]
(from the induction hypothesis)
\[ = (k+1)! \]
2.1 - Induction
\[\sum_{i=1}^n (i \times i!) = (n+1)! - 1 \]
\[\sum_{i=1}^k (i \times i!) = (k+1)! - 1 \]
\[\sum_{i=1}^{k+1} (i \times i!) = (k+2)! - 1 \]
2.1 - Induction
\[\sum_{i=1}^{k+1} (i \times i!) = (k+1) \times (k+1)! + \sum_{i=1}^k (i \times i!) \]
\[= (k+1) \times (k+1)! + (k+1)! - 1\]
\[= (k+1)! ( k+1+1) - 1\]
\[= (k+2)(k+1)! - 1\]
\[= (k+2)! - 1\]
as required