Daniel Sutantyo, Department of Computing, Macquarie University
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
n∗(n−1)∗⋯∗(n−k+1)=(n−k)!n!
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
k!(n−k)!n!=(kn)
3.1 - Permutations and Combinations
1 4 6 4 1
a b c d
a b c d
a b c
a b d
a c d
b c d
a b
a c
a d
b c
b d
c d
a
b
c
d
3.1 - Permutations and Combinations
1 4 6 4 1
1 3 3 1
23=8
1 5 10 10 5 1
25=32
24=16
a b c d
10
a d
b c d
c
1 0 0 1
10
10
10
0 1 1 1
0 0 1 0
3.1 - Permutations and Combinations
(x+y)4=x4+4x3y+6x2y2+4xy3+y3
(x+y)n=k=0∑n(kn)xkyn−k
(x+y)3=x3+3x2y+3x2y2+1y3
(x+y)2=x2+2xy+y2
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
(n−1)! ways (why not n! ?)
A
B
C
D
E
A
B
C
D
E
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations