Daniel Sutantyo, Department of Computing, Macquarie University
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
\[n * (n-1) * \cdots * (n-k+1) = \frac{n!}{(n-k)!}\]
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
\[\frac{n!}{k!(n-k)!} = \binom{n}{k}\]
3.1 - Permutations and Combinations
1 4 6 4 1
a b c d
a b c d
a b c
a b d
a c d
b c d
a b
a c
a d
b c
b d
c d
a
b
c
d
3.1 - Permutations and Combinations
1 4 6 4 1
1 3 3 1
\(2^3 = 8\)
1 5 10 10 5 1
\(2^5 =32\)
\(2^4 = 16\)
a b c d
\(\frac{0}{1}\)
a d
b c d
c
1 0 0 1
\(\frac{0}{1}\)
\(\frac{0}{1}\)
\(\frac{0}{1}\)
0 1 1 1
0 0 1 0
3.1 - Permutations and Combinations
\[(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^3\]
\[(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^ky^{n-k}\]
\[(x+y)^3 = x^3 + 3x^2y + 3x2y^2 + 1y^3 \]
\[(x+y)^2 = x^2 + 2xy + y^2 \]
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations
\((n-1)!\) ways (why not \(n!\) ?)
A
B
C
D
E
A
B
C
D
E
3.1 - Permutations and Combinations
3.1 - Permutations and Combinations