Thomas Borsoni*
Journées Jeunes EDPistes de France
January 15, 2026
*postdoc at CERMICS, École Nationale des Ponts et Chaussées
Supervised by V. Ehrlacher & T. Lelièvre
The classical and fermionic Boltzmann equations
Trend to equilibrium
Introduction
1. The entropy method
2. Overview for kinetic equations
3. Transfer from classical to fermionic
The classical and fermionic Boltzmann equations
Trend to equilibrium
Introduction
1. The entropy method
2. Overview for kinetic equations
3. Transfer from classical to fermionic
\(g \equiv g_{t,x}(v)\) density of molecules
Boltzmann equation:
Conservation laws
Collision operator:
(momentum)
(energy)
\(B \equiv B(v,v_*, \sigma) > 0 \) \(\leftrightarrow\) interaction potential
Collision kernel:
Statistical description of a rarefied monoatomic gas
\(g \equiv g_{t}(v)\) density of molecules
expected behaviour
Maxwellian
distribution
\(f \equiv f_{t}(v)\) density of fermions
Pauli exclusion principle
Fermi-Dirac
statistics
- Existence & stability of solutions to homogeneous BFD for cut-off hard potentials
Lu, Wennberg
2001 -> 2008
Existence and uniqueness of solutions to inhomogeneous BFD for cut-off kernels
Dolbeault
1994
- Relaxation to equilibrium of such solutions:
either \(f_0 =\) or \(f_t \; \underset{t \to \infty}{\rightarrow}\)
Derivation of the equation from particles system (partially formal)
Benedetto, Castella, Esposito, Pulvirenti
2003
at which rate?
saturated state
Fermi-Dirac equilibrium
The classical and fermionic Boltzmann equations
Trend to equilibrium
Introduction
1. The entropy method
2. Overview for kinetic equations
3. Transfer from classical to fermionic
\(D(h) \gtrsim {H(h|M^h)}^{1+\alpha}\)
\(D(h) \geqslant C H(h|M^h)\)
Relative entropy to equilibrium:
\(H(f_t|M^{f_0}) \lesssim t^{-1/\alpha}\)
\(H(f_t|M^{f_0}) \lesssim e^{-Ct} \)
Csiszár-Kullback-Pinsker
(for the Boltzmann entropy)
entropy dissipation
entropy inequality
The classical and fermionic Boltzmann equations
Trend to equilibrium
Introduction
1. The entropy method
2. Overview for kinetic equations
3. Transfer from classical to fermionic
fermionic entropy
classical entropy
Equilibrium: Fermi-Dirac statistics
Equilibrium: Maxwellian
Equilibrium: Fermi-Dirac statistics
Equilibrium: Maxwellian
entropy \(\displaystyle H : h \mapsto \int \Phi(h)\) \(\Phi\) \(\mathcal{C}^2\) st. convex
equilibrium
fermionic entropy
classical entropy
Carlen, Carvalho, Desvillettes, Toscani, Villani
1992 \(\to\) 2003
Desvillettes, Villani
2000
Alonso, Bagland, Desvillettes, Lods
2020-2021
log-Sobolev inequality
generalized
Gross
1975
Carillo, Laurençot, Rosado
2009
classical
classical
classical
fermionic
fermionic
fermionic
Toscani \(\leqslant\) 1999,...
Transfer from classical to fermionic
B. 2024
The classical and fermionic Boltzmann equations
Trend to equilibrium
Introduction
1. The entropy method
2. Overview for kinetic equations
3. Transfer from classical to fermionic
We know:
entropy inequality for classical Boltzmann
entropy inequality for fermionic Boltzmann
We want:
fermionic entropy dissipation of \(f\)
classical entropy dissipation of \( \displaystyle \frac{f}{1-\textcolor{purple}{\delta} f} \)
\( \gtrsim\)
?
As soon as all terms make sense,
classical relative entropy to equilibrium of \(\displaystyle \frac{f}{1-\textcolor{purple}{\delta} f}\)
fermionic relative entropy to equilibrium of \(f\)
Theorem.
B. 2024
Fix
is nonincreasing on \(\R_+\).
Show that \(R_g' \leq 0\) on \(\R_+^*\) and \(R_g\) continuous on \(\R_+ \)
Proof scheme
We show:
We use:
Proposition.
For all
such that
and
For Boltzmann/BFD (& Landau/LFD) dissipations:
entropy inequality for Boltzmann
entropy inequality for Boltzmann-Fermi-Dirac
Conclusion
2024
Conclusion
contribution
method
literature
General weighted \(L^p\) Csiszár-Kullback-Pinsker
Proposition.
(general entropy)
\(\displaystyle H(f) = \int\Phi(f)\), \(\Phi \; \; \mathcal{C}^2\) st. convex, \(M^f\) equilibrium, and
For any \(f\), any \(p \in [1,2]\) and \(\varpi\) weight,
Corollary.
For any \(0\leq f \in L^1_2\cap L \log L(\R^3)\), \(p \in [1,2]\) and \(\varpi : \R^3 \to \R_+\),
(Boltzmann entropy)
\(\displaystyle H_0\) Boltzmann entropy and \(M_0^f\) Maxwellian.
[simplified]